Pattern-Oriented Software

Architecture:

A Syste

Peter Sommerlad, and Michael Stal

1996, John Wiley & Sons
ISBN: 0471958697, $39.95

community. The publication of Design Patterns! in
1995 documented many of the techniques that expe-
rienced developers use almost daily in software design.

The authors of Pattern-Oriented Software Architecture:
A System of Patterns take us further, describing software
patterns not just at the lower levels of a system, but also at
the architectural level. Their book catalogs eight architec-
tural patterns used by and useful to system architects, and
eight design patterns, similar in scope to those described
in Design Patterns.

It also describes a framework for effectively organizing
architectural patterns, design patterns, and idioms. This
book makes some basic architectural principles accessible
to software designers at all levels and forms the basis for a
common design vocabulary.

A pattern describes a solution to a problem in a con-
text. Patterns provide a way to impart system-building ex-
pertise to others. In this book, Buschmann et al. provide
an introduction to patterns for the uninitiated and a
wealth of material for those already familiar with the
field. Some of the patterns will be familiar to the experi-
enced designer, others will be new and will provide new
perspectives on problems. Far from being just a reference
book, this book also provides some context for the grow-
ing patterns community by describing the history of pat-

PATTERNS ARE A hot topic in the software development

REVIEW
Stephen P. Berczuk

berczuk@corechange.com

tterns

by Frank Buschmann, Regine Meunier, Hans Rohnert,

terns, the current community, and future directions.

Pattern-Oriented Software Architecture: A System of Pat-
terns divides its patterns into three categories: architec-
tural patterns, design patterns, and idioms.

Architectural Patterns

According to the authors, an architectural pattern ex-
presses a fundamental structural organization schema for
software systems. An example presented in the book is the
well-known MVC (Model-View-Controller) pattern used in
interface design to separate presentation from basic func-
tion.

Design Patterns

To define a design pattern, the authors define a design pat-
tern, citing Gamma et al.,! as “A commonly recurring
structure of communicating components that solves a gen-
eral design problem within a particular context.”

The authors do not just add to the collection of pat-
terns in Design Patterns, but they build upon them, with
patterns such as Command Processor, which builds on
the Command Pattern in Design Patterns to provide a
mechanism for separating a request for service from its
execution.

www.ondoc.com

Distributed Object Computing

March 1997 61

BOOK REVIEW

Idioms

An idiom is a low-level pattern specific to a programming
language. The authors present examples of idioms, show-
ing, for example, how the Singleton pattern can be imple-
mented using two different idioms, depending on whether
the implementation language is C++ or Smalltalk. A System
of Patterns is especially valuable because it is conscious of
other pattern work.

Many of the architectural and design patterns in this
book build on or are compared to the work presented in
Design Patterns and other sources, such as the patterns in
Pattern Languages of Program Design.23

The authors are fully aware of the context provided by
others. Adding to the sense of connectedness, the patterns
in the book also cross-reference and are compared to each
other, providing insight into when a given pattern is appro-
priate. The cross referencing also provides a mechanism
for avoiding long-winded descriptions of concepts. Instead
of explaining how you ensure only master components in
the Master—Slave pattern (which involves fault tolerant sys-
tems), the authors suggest applying the Singleton pattern
from Design Patterns.

Summary

It is quite helpful that the patterns in this book have de-
scriptive names, as this simplifies referring to the patterns
in design discussions. Once familiar with a pattern, one
can simply say, “We need a Broker (or a Proxy) here,” pro-
viding a detailed bit of information to anyone who has the
specific pattern, and giving at least some idea of its mean-
ing to those who don't.

The presentation of the patterns is very effective. Each
has a running example, and the roles of the objects in the
patterns are diagrammed with CRC (Class-Responsibility-
Collaboration) diagrams. Dynamic interactions are illus-
trated using interaction diagrams, and class structure us-
ing the OMT notation.

While patterns are not meant to serve as cookbook
recipes, the elements are described clearly enough that you
can easily implement and recognize the patterns in your
system. The domains of the patterns range from Network-
ing (Forwarder-Receiver), Operating Systems (Micro-Ker-
nel), interactive systems (MVC) and Artificial Intelligence
(Blackboard). There are examples in Java and C++.

The authors extensively cite other relevant works, and
each pattern has a “Known Uses” section that describes
systems in which these patterns have been found, demon-
strating that these patterns are based on real experience
and that they do have an element of universality.

Far from simply being a catalog of useful patterns a soft-
ware designer can use as a sourcebook when building
complex systems, A System of Patterns also explains why

patterns helps to simplify the process of building complex
architectures. These patterns have the potential to con-
tribute more to the generation of architectures than do
those in Design Patterns, because they start with high-level
problem statements and incorporate other patterns.

Much (but not all) pattern work to date lacks this aspect
of building on already discovered patterns to build larger
ones, but this is at the heart of the work in architecture4
that inspired software patterns.

There is a discussion of the patterns community and of
future directions. When patterns cross reference each
other, the authors adopt the style of Design Patterns, which
refers to the patterns by the number of the page on which
they appear, making them quite easy to find.

I ¢ the heart of the work in
Bl swchitecture that iu;pékeé
P software patteins is the
actice of building ou discovered
patterus to produce larger ones

Other aspects of the book are a discussion of the pat-
terns community and of future directions, a good bibliog-
raphy, and an index of patterns showing not only where the
patterns are described but where they are referenced.

Pattern-Oriented Software Architecture: A System of Pat-
terns provides you not only with a collection of patterns
that will help you build better systems, but also with an un-
derstanding of how to apply the patterns effectively. This
book will surely become an important reference for those
designing systems and is an excellent companion to Design
Patterns. ©

References

- 1. Gamma, E,, et al., Design Patterns: Elements of Reusable Object-

Oriented Software, 1995, Reading, MA: Addison-Wesley.

2. Coplien, J.O. and D. Schmidt, Eds., Pattern Languages of Pro-
gram Design, 1995, Reading, MA: Addison Wesley.

3. Vlissides, J., J. Coplien, and N. Kerth, Eds., Pattern Languages of
Program Design 2, 1996, Reading, MA: Addison Wesley

4. Alexander, C., S. Ishikawa, and M. Silverstein, A Pattern Lan-
guage, 1977, Oxford University Press.

Stephen P. Berczuk is with Corechange LC in Boston, Massa—
chusetts.

62 March 1997

Distributed Object Computing

www.ondoc.com

