
Agile SCM: Basics For Small Teams

As much as software developers are
stereotyped are solitary coders, software
development is a collaborative activity.
Communication among team members is
essential in ensuring working continuously
working software. And working software is

what makes communication with stakeholders easier. You can show the
state of your application rather than explain progress in terms of more
abstract concepts. Your SCM system (and processes) are an essential part
how you communicate both in and about code between developers and to
stakeholders.

Communication gets more complex the larger the group of people. Small
teams have the advantage of being able to be aware of what each person
is doing, and of having shared product vision. Small teams, being small,
are also resource constrained, so you want to maximize time spent
delivering value, and minimize the time spent in process overhead.

The Short Lists
Given the time constraints of small teams we'll be brief and list the
essential items for success with SCM in tools and processes, grouped into
general priorities.

Really Basic SCM
These items might seem too basic to mention, but we'd be remiss not to
mention them:

Use a version management system (SCM Repository) as the only
way you share code. There is no excuse for sharing code any other
way. An SCM system gives you the ability to track changes, and
have a central place to backup and recover the business asset that is
your code.
Create a process that enables one to get a workspace up and
running quickly. A new person joining the team should be able to
start with a set of tools, and then check out source code, run the

application, and make a change on their first day. The process of
making this possible will also make your deployment model more
robust.
Use a continuous integration (CI) environment. Having your code
in a repository is good, but only in the sense that it is usable by
others when they check out the code. A CI environment gives you a
sanity check that your source code builds, which is the minimal
criteria for it being usable. Also, enabling a CI environment means
that you need to have a build process that is somewhat portable and
consistent.

Keeping things working
The basic list will allow you to collaborate effectively and deliver features
quickly, but you may still find yourself stumbling unless you add some
practices to eliminate distractions:

Create automated tests and run them as part of your build.
Compiling, which necessary, is not sufficient for keeping code
working. Automated testing, while adding time, will pay off with
added robustness of code and the ability to make changes reliably.
Work off of a single code line to start. Branch only once you have a
delivered codeline to maintain, that you expect is stable. Each
branch is a parallel line of development, and parallel work means a
distraction from your main work.
Deploy often. The real test of whether your SCM process is helping
you to deliver product is how effectively you can deploy. Don't wait
til the end of a release to think about deployment practices. Start
deploying your application the first day. This guards against
problems only being discovered late in the process.
Automate your deployments. The more automated your process is
the easier it is to deploy more frequently. This becomes a virtuous
cycle (of positive feedback).

Trace and Improve
The previous lists will get you most of the technical issues, but there are
still things you can do improve how you collaborate.

Identify your commits with meaningful messages. Be explicit about

the reason for a change in terms of business goals. Keep your
commits and consistent and cohesive - avoid mixing changes to
refactor existing code that doesn't change the functionality with
changes to add new functionality - split those into separate
commits. If you use an issue tracking system, associate each commit
with an issue number. Otherwise, refer to a feature or user story.
While the code can often speak for itself, context is helpful.
Think, and Review. Since every team is different, and teams
themselves change over time, it's important to review how you are
working, and figure out which practices are working for you and
which are not. Retrospectives are a key agile development practice,
but they aren't just for agile developers. Periodically make a list of
the things about your SCM and Release process that seemed to be
working well, and which need improvement.

Recap and Resources
While in an ideal world you'd do everything on this list on day 1, you
might have practical roadblock to doing that, so we broke the list into
parts....

To learn more, here are some resources we like:
Practices to use for small team scm, and their rationale: SCM Patterns
Book(Berczuk, S. P. and B. Appleton (2003). Software configuration
management patterns : effective teamwork, practical integration. Boston,
Addison-Wesley.)

Deployment: (Jez Humble's book) Humble, J. and D. Farley (2010).
Continuous delivery : reliable software releases through build, test, and
deployment automation. Upper Saddle River, NJ, Addison-Wesley.

Retrospectives: Agile Project Retrospectives: Derby, E. and D. Larsen
(2006). Agile retrospectives : making good teams great. Raleigh, NC,
Pragmatic Bookshelf.

Unit Testing: XUnit Patterns(Meszaros, G. (2007). xUnit test patterns :
refactoring test code. Upper Saddle River, NJ, Addison-Wesley.)
CI Practices and approaches: Continuous Integration. (Duvall, P. M., S.
Matyas, et al. (2007). Continuous integration : improving software

quality and reducing risk. Upper Saddle River, NJ, Addison-Wesley.)

You'll find that some of these books overlap in content a bit. This is
because it takes an assortment of practices to collaborate effectively. On
a small team you have the advantage of easier communication. Use that
to your advantage to simplify your process, but don't underestimate the
value of process in making communication easier.

About the Authors Brad Appleton is an enterprise SCM solution architect
for a Fortune 100 technology company. Currently he helps projects and
teams adopt and apply agile development & SCM practices. Brad also
author's the Agile CM Environments blog, and is co-author of Software
Configuration Management Patterns: Effective Teamwork, Practical
Integration, the "Agile SCM" column in CMCrossroads.com's CM
Journal, is a regular contributor to "The Agile Journal", and is a former
section editor for The C++ Report. Since 1987, Brad has extensive
experience using, developing, and supporting SCM environments for
teams of all shapes and sizes. He holds an M.S. in Software Engineering
and a B.S. in Computer Science and Mathematics. You can reach Brad by
email at brad@bradapp.net

Robert Cowham has been in software development for over 20 years in
roles ranging from programming to project management. He continues
his involvement in development projects but spends most of his time on
SCM Consultancy and Training for VIZIM Worldwide. He is the Chair of
the Configuration Management Specialist Group of the British Computer
Society, has a BSc inComputer Science from Edinburgh University and is
a Chartered Engineer (CEngMBCS CITP). You can reach him by email at
robert@vizim.com

Steve Berczuk is a consultant and developer who works with Agile teams.
He has over 20 years experience developing application, often as part of
geographically distributed teams. In addition to developing software he
helps teams use Software Configuration Management effectively in their
development process. Steve is co-author of the book Software
Configuration Management Patterns: Effective Teamwork, Practical
Integration and a Certified ScrumMaster. He has an M.S. in Operations
Research from Stanford University and an S.B. in Electrical Engineering

mailto:brad@bradapp.net
mailto:robert@vizim.com

READABILITY — An Arc90 Laboratory Experiment

from MIT. You can contact him at steve@berczuk.com

Excerpted from Agile SCM: Basics for Small Teams

http://www.cmcrossroads.com/agile-scm/13844-agile-scm-basics-for-small-teams

http://lab.arc90.com/experiments/readability

http://lab.arc90.com/experiments/readability
http://www.arc90.com/
mailto:steve@berczuk.com

