
(D6&$
Agile Product & Project Management Advisory Service
Executive Update Vol. 12, No. 10

SCM and Build:
Keys to an Agile Lifecycle

by Steve Berczuk

Software configuration management (SCM) and build
management are misunderstood disciplines. Many orga
nizations have practices in these areas that either hinder
productivity or sacrifice too much traceability in the
name of improving short-term productivity. SCM and
build, when done correctly, can provide a framework
that allows a team to develop code quickly. However, it's
also possible to establish practices that can hinder your
development team. This Executive Update discusses the
importance of the build and SCM processes and what
you need to know to help these processes be effective.

SCM AND BUILD AT THE CENTER

SCM and build management do not, at first, seem as
complicated, interesting, or challenging as other aspects
of software development. But SCM and build practices
are a central part of a project's daily activities and pro
vide a key mechanism for communication among stake
holders. Together, they provide for immediate visibility
into the state of your project as well as tools to help you
manage change.
SCM and build processes affect both how developers
work every day, and how the organization manages
its application lifecycle and release process. Since
they are central to coordination and productivity,
SCM and build present many interesting challenges.
Thus, these processes deserve serious consideration
from management and project stakeholders to ensure
that they help and not hinder the team's productivity.

While each has distinct concerns, SCM and build man
agement are closely related disciplines. SCM is about
providing the tools and mechanisms to determine what
functionality the code provides, wrhile the build process

provides validation that what you expected to see in
the code is actually implemented. Taken together, the
build and SCM functions also provide an essential
communication mechanism among project stakeholders.

DEFINING SCM AND BUILD

The most visible aspect of SCM is version management.
The first thing many think about when considering SCM
is version management tools. While tools can make work
simpler or more difficult, the tool you use should be
a secondary consideration to understanding the SCM
approach that works best for your team.
While not the whole of SCM, version management
practices are central to fulfilling SCM's key functions,
which, according to Susan Dart, formerly of SEI, are:1
■ Configuration identification. Determining what

source code the team is working with can be
achieved through a combination of build and
version management processes.

■ Configuration control. Managing the release of a
product and changing it in a consistent way through
out the lifecycle primarily involves your product
management and issue-tracking processes.

■ Status accounting. Recording and reporting the sta
tus of components and change requests and gather
ing vital statistics about components in the product
spans all of your processes, though you can generate
many useful statistics about code and costs of change
as part of the build process.

■ Audit and review. Validating the completeness of a
product deliverable typically involves collaboration
between your version management, issue-tracking,
and testing processes.

■ Build management. Controlling build configurations
with your build and version management systems
allow for repeatable build and a robust "manufac
turing" (as Dart refers to it) process.

■ Process management. Ensuring organizational
processes (e.g., testing) are followed helps
streamline the lifecycle.

Cu' i trr Consort ium



AGILE PRODUCT & PROJECT MANAGEMENT ADVISORY SERVICE

■ Teamwork. Controlling interactions between devel
opers working on a product or project can make it
easier for team members to work together.

To perform these functions, you need to understand
how to incorporate practices into your team's day-to
day workflow and also provide mechanisms to support
and automate SCM functions.

As stated earlier, the build process provides support
for performing SCM functions. As such, a build process
that includes continuous integration (CI) and automated
testing does this by:2
■ Enabling reproducibility across the lifecycle, from

the developer workspace through the production
build environment, supporting configuration control
and identification

■ Providing a mechanism for the execution of auto
mated testing in a repeatable environment, thus
supporting process management, audit, and review

■ Providing a logical place to report on code metrics
and to deploy standard artifacts to a shared repository,
thus supporting status accounting and teamwork

When combined with practices that associate commits
to the source code repository (with associated require
ments), your build system provides a central location to
report on feature progress, which is further in support
of status accounting.1

BUILD, ORGANIZATION, AND ARCHITECTURE
Because SCM and the build are tools to facilitate com
munication and manage change, they work in the con
text of your team so there isn't a single approach that
will work with all organizations, all architectures, and
all development approaches. To find the SCM approach
that most effectively enhances communication and
improves delivery speed, you need to consider the
organization, the architecture, and the development
approach.

According to Conway's Law,4 the organization's struc
ture establishes communication patterns and sometimes
can affect the architecture. Consider the size and location
of your team. A smaller, colocated team will need fewer

formal processes to maintain working, coherent code. In
fact, more process might disrupt effective communica
tion patterns. A small team can be more successful work
ing off a single code line, branching only for releases.*
A larger team may benefit from a more structured
approach, more automated processes to enforce policies,
and staged builds to minimize the cost of broken builds.

Architecture is a key aspect of communication in the
product team/ It also can make it easier or more diffi
cult to manage change. A more modular architecture
can lead to autonomous work among even noncolo-
cated groups. A monolithic architecture might require
more structured build and SCM processes. Also, the
build process provides a clear model of the component
architecture, making dependencies explicit.
The development approach has an impact on communi
cation and architecture. A large team using a waterfall
like approach to development might benefit from more
code lines and a staged approach to integration. An
agile team that develops "test first" might find such
an approach frustrating and could deliver more effec
tively with a single code-line model. Also, agile teams
developing test first will tend to have more modular
architectures, making it easier to manage change at the
component, rather than the code-line level.
Because each team is different, you want to establish
practices that give you the core functions of SCM with
out disrupting the productivity of your team. You want
to focus not simply on "identification," "control," and
"accounting and review" as functions, but rather on
how these functions help you deliver value. While not
as simple as applying a process checklist to your team,
you will end up with a more effective team if you step
back and consider what processes achieve the func
tional goals of SCM with the least overhead.

BUILD AND SCM IN THE LIFECYCLE

To evaluate how well your SCM process works,
consider each of the following scenarios:
■ Having a new developer join your organization.

An effective SCM process should make it easy to
have a new developer ready to check code wTithin
hours of starting a project.

The Executive Update is a publication of the Aj;ile Product & Project Management Advisory Service. ©2011 by Cutler Consortium. All rights
reserved. Unauthorized reproduction in any form, including photocopying, downloading electronic copies, posting on the Internet, image
scanning, and faxing is against the law. Reprints make an excellent training tool. For information about reprints and/or back issues of Cutter
Consortium publications, call +1 781 648 8700 or email service@cutter.com. Print ISSN: 1946-7338 (Executive Report. Executive Summary, and
Executive Update); online/electronic ISSN: 1554-706X.

Vol. 12, No. 10 ©2011 Cutter Consortium



EXECUTIVE UPDATE

■ Fixing an urgent production issue. A developer
should easily be able to identify which code line to
make the change on and should be able to quickly
create a workspace to enable implementation and
testing a fix. The QA team should be able to test a
new build shortly after a fix is checked in.

■ Gathering metrics on code quality and keeping the
code working. You should be able to quickly identify
when tests fail or when test coverage goes below
your desired threshold by looking at a report that
your CI system generates.

■ Evaluating the latest version of the application.
If you can easily get access to a build that you can
deploy and run, you will be able to quickly demo a
new feature to a client or deploy an application for
QA testing.

■ Identifying the code that you are using to verify
compliance with licensing rules. Your build system
can generate reports and flag potential issues.

All these functions are supported by your build and
SCM processes. The combination of your build and
SCM mechanisms allows you to easily create working
copies of your code. And a build and CI mechanism
provides you with a dashboard on the health of the
project.

AVOIDING COMMON MISTAKES

The most common mistakes teams make when consid
ering implementing practices that will support the core
SCM functions arise out of the belief that SCM func
tions must be heavyweight to be valid. This leads to
either (1) ineffective (or nonexisting) processes, out of
fear that "process" will slow the team down excessively
or (2) overly involved processes, out of a fear that the
processes (not the results) need to be highly visible to
be effective.
It's possible to create SCM processes that add value
while not being overly invasive or disruptive and
which support how developers work day to day.7 If
developers have a process that supports their work,
rather than being a "necessary evil," the process will be
more effective, and you will need to invest less energy
in enforcement of "overhead" activities. Automate the
routine and provide tooling to reduce the cognitive
overhead of processes. To find the right balance:

■ Prioritize making day-to-day tasks simple and
direct. Making it easy to check out and build code
will not only impact daily productivity but will also
enable more robust configurations. Developers have
a role to play in helping with issue identification.*

■ Don't focus too much on tools. Start with a process
that makes sense and find a tool that supports it.

■ Integrate issue-tracking and SCM systems in a way
that fits developer workflows."

Another common mistake is to confuse good SCM with
"good branch management." While branching can be a
useful tool to manage change and variation, it's not the
only tool your team has. Any time you create a branch,
you create another stream of code that has the potential
to distract the team from the main line effort. Some
times the benefits of the branch outweigh the costs,
such as maintaining a release line to provide support
for the current version while reducing the impact of
bug fixing on new development. In many other cases,
having more branches can distract from efforts to make
your process able to deliver new releases frequently
enough and of high-enough quality.

BETTER SCM, QUICKLY

Each organization's effective SCM process might look
slightly different, but there are some common practices
and tools that are essential. Setting up a CI system for
your project that will build and run tests periodically
will encourage the team to create a build that is main
tainable and enable you to quickly identify issues that
will make the development, testing, and deployment
of your application difficult and error-prone. At a
minimum, you should start with the following steps:
1. Place all artifacts necessary to build the code under

version management.

2. Create a portable build.

3. Create a CI system.
4. Think about deployment at the start.'"

Once you have these steps in place, you can find the
policies and processes around change management,
issue management, and branching that help your team
develop code effectively while keeping stakeholders
informed of status. And you can identify roadblocks
to agility.

www.cutter.com Vol.12. No. 10



4 AGILE PRODUCT & PROJECT MANAGEMENT ADVISORY SERVICE

CONCLUSION

Having good SCM and build processes can help people
be productive sooner, whether they are joining an orga
nization or joining a team. While the right approach
for your team will depend on your organization, archi
tecture, and processes, there are some concrete steps
you can take to bootstrap your way to a more effective
SCM process that not only provides for accountability
and traceability but also helps deliver value.

ENDNOTES

■Dart, Susan. "The Past, Present, and Future of Configuration
Management." Technical Report CMU/SEI-92-TR-8, SE1,
Carnegie Mellon University, July 1992 (www.sei.cniu.edu/
reports/92tr008.pdf).
2Duvall, Paul M., Steve Matyas, and Andrew Glover.
Continuous Integration: Improving Software Qualiti/ and
Reducing Risk. Addison-Wesley Professional, 2007.

'Berczuk, Steve. "What Are You Doing?" SlickyMinds.com,
14 March 2011 (www.stickyminds.com/sitewide.asp?
Function=edetail&ObjectType=COl.&ObjectId=16706&tth=
DYN&tt=siteemail&iDyn=2).

Conway, Melvin E. "How- Do Committees Invent?" Datamation,
April 1968 (www.melconway.com/research/committees.html).
"Berczuk, Stephen P., and Brad Appleton. Software Configuration
Management Patterns: Effective Teamwork, Practical Integration.
Addison-Wesley Professional, 2003.

"Grinter, Rebecca E. "Using a Configuration Management Tool
to Coordinate Software Development." Proceedings of the
Conference on Organizational Computing Si/stems (COCS),
ACM, 1995; Coplein, James O., and Gertrud Bjornvig. Lean
Architecture: For Agile Software Development. Wiley, 2010.

'Berczuk and Appleton. See 5.
"Bercuzuk. See 3.
"For suggestions, see 3.
'"Berczuk, Steve. "Devops: Beginning with the End in Mind."
Cutter Consortium Agile Product & Project Management
Executive Update, Vol. 12, No. 6, 2011.

ABOUT THE AUTHOR

Steve Berczuk is an engineer and ScrumMnster at Humedica,
where he's helping to build next-generation clinical informatics
applications based on SaaS. The author of Software Configuration
Management Patterns: Effective Teamxvork, Practical Integration, he
is a recognized expert in software configuration management
and agile software development. Mr. Berczuk is passionate
about helping teams work effectively to produce quality soft
ware. He has a master's degree in operations research from
Stanford University, a bachelor's degree in electrical engineer
ing from MIT, and is a Certified Practicing ScrumMaster. He
can be reached at steve@berczuk.com.

Vol. 12, No. 10 ©2011 Cutter Consortium


