
3/2/12 6:33 PMAgile Code for Agile Teams

Page 1 of 4http://www.techwell.com/print/120441

Published on TechWell (http://www.techwell.com)

Home > Agile Code for Agile Teams

Agile Code for Agile Teams
Article by Steve Berczuk [1] | Comments: (0) | Wed, 02/29/2012 - 15:26
Summary:

What makes a team agile? Is it in way it plans projects, or how it engineers its products? In this
article, Steve Berczuk explains how agile code and technical practices can help a team stay agile
across the product lifecycle.

TechWell Originals

What makes a team agile? Is it in way it plans projects, or how it engineers its products? In this
article, Steve Berczuk explains how agile code and technical practices can help a team stay agile
across the product lifecycle.

There are two closely related aspects to a team’s being agile: 1) planning or project
management, and 2) execution or engineering practices. When people think about agile projects,
the focus is often either on the planning and project management process or the engineering
practices. It’s important to understand that both aspects work together. This article discusses
how the way you execute your engineering practices can help your agile process be effective.

Agile Basics
Agile methods acknowledge uncertainty and manage it with techniques that rely on transparency,
inspection, and adaptation, with an emphasis on working software. Agile projects allow teams to
adjust goals in response to technical issues or changes in current needs or future technical or
market forces.

Some agile methods, such as XP, focus on technical practices.
Others, such as Scrum, focus on project management practices.
Both planning and execution are necessary for an agile approach
to work. Good planning makes it easier to execute in an agile way.
Agile plans can only be effective if the team follows good
engineering practices that give you the feedback that you need to
inspect and evaluate and a codebase that will allow you to adapt.

To understand how engineering practices can drive improvements in the agility of your team, you
need to understand the cultural challenges of being agile, and some basics of agile planning.

3/2/12 6:33 PMAgile Code for Agile Teams

Page 2 of 4http://www.techwell.com/print/120441

Cultural Challenges
Agile is about incremental progress and continuous improvement. To become a better agile
team, you need to acknowledge uncertainty and the possibility of failure. In many teams, this is
hard to do. Getting good feedback requires changes in how you define requirements, develop
features, and interact with others in your organization.

Defining requirements with precise-enough definition to show whether you have met the goal,
while also maintaining enough simplicity that you can move from specification to development
quickly, can be challenging. Developing, maintaining working code, and coding and designing in
a way that allows for incremental development and continual feedback require new approaches
and skills. Change, learning, and accepting and giving feedback are often difficult.

Agile Planning
“Agile planning” means enough planning to move forward and measure progress. Agile
requirements are focused on delivering functionality to users and start with three things:

A user, who has a business need
A feature, which is what the system will do
A goal, which is reason the user wants to do the task

While many teams can develop lists of features, the user and end-goal parts of the story are
often missing. The user and his goal are the most difficult parts to express but also the most
important.

Having a clear statement of a goal allows you to decide what implementation will satisfy the core
need and to evaluate whether the story is even necessary to implement. Since implementing
features that do not have a clear use is wasteful, removing items from the backlog can be a
major efficiency gain for a team.

Tracking and Defining Done
Tracking progress on a frequent basis is an important way to identify problems. Agile teams
measure progress by continually re-evaluating the amount of work remaining, rather than effort
spent or “percent complete.”

Even when the product owner has a clear vision, teams often struggle with defining what needs
to be built in a way that can be evaluated. Tests pass or fail, and builds are successful or not, but
it’s more difficult to determine if the test is testing the right thing. Deciding whether a team has
completed a story may always have a subjective element, but you can make it easier if you have
a good sense of what “done” means.

With an agile approach, some degree of consensus on how to evaluate completeness is critical.
Without a good understanding of what a complete story is, the team cannot estimate accurately
and, thus, cannot set expectations. Not being able to set expectations can cause a breakdown in
trust between the team and the product owner. Without trust, it’s harder for management to
accept the idea of self-organizing teams, thus negating the efficiency benefits this approach
provides.

Quite often, even the product owner is unclear about what to ask for. In these cases, it’s best to

3/2/12 6:33 PMAgile Code for Agile Teams

Page 3 of 4http://www.techwell.com/print/120441

make decisions and acknowledge that you may be wrong rather than work with difficult-to-
evaluate stories.

The developers on an agile project can contribute to project success in the face of uncertainty by
working towards maintaining agile code.

Agile Code
Understanding the needs of the agile planning process, we can now talk about how engineering
practices meet the needs of agile methods and drive them when they are lacking. Regardless of
the agility of your product backlog, to be an agile team you need agile code. Agile code is code
that you can change while still being able to deliver working software on a regular basis.

Agile code can be maintained by a combination of good design and having practices in place that
provide constant feedback on the state of your code so that you can detect problems as soon as
they occur. These practices include:

Automated unit and integration tests in combination with continuous integration, to provide
immediate feedback on the effects of a change to the code
Refactoring and continually improving the structure of code while maintaining functionality
Frequent deployments to a production-like environment to identify issue before they can
cause a last-minute emergency and to make the application visible to stakeholders

By maintaining code in a working state and in a state where it is easier to change, you make it
possible for the team to implement changes to a product backlog that a product owner might ask
for.

While technical practices such as refactoring, design, and testing are essential to a successful
agile project, avoid having purely technical tasks on the product backlog. Rather, consider how
doing these tasks furthers the progress of the project. When working on backlog items, always
consider effort required to refactor, design, and so forth as part of the estimate, since delivering
code that can sustain change is essential to agile success.

Delivery and Deployment
Working software is the measure of progress in an agile project, but “working” means more than
just “can demo” or even “compiles and passes automated tests.” Software isn’t useful and
stakeholders cannot provide useful feedback on it until it can run on the target environment. Also,
to be “done,” you need to address differences between a development system and a production-
like one. There are two steps to building code in a way that supports an agile approach:
developing in vertical slices and deploying early and often to a target environment.

The vertical slices approach is to develop end-to end features, from the user interface (UI)
through whatever backend systems are involved. Rather than focusing on the data model or the
UI or application tier, building end-to end (though less rich) solutions has advantages. Users can
see the application do something. A “data model,” while important, is not easy to demonstrate.
The team can validate the interactions between layers and make changes to make work at other
layers easier, thus minimizing unnecessary rework. UI implementation can be influenced by
decisions made at the data layer, for example, and vice versa. The team and product owners can
understand what feature are truly necessary and have a better sense of what to defer if

3/2/12 6:33 PMAgile Code for Agile Teams

Page 4 of 4http://www.techwell.com/print/120441

something is late.

Make your application available on a target system early and verify the deployment and
installation process often. This will give you an early opportunity to identify decisions that will
simplify the deployment and configuration process.

The Agile Team
To be able to implement in vertical slices and be efficient, agile teams are often composed of
generalizing specialists. Generalizing specialists can work on multiple aspects of the system,
though they have expertise in a particular area. This means that all work that touches the UI is
not blocked if your UI developer is overly busy. It also allows a first pass, end-to-end
implementation by a single developer. As a generalizing specialist, you are not abandoning the
idea that there are no “experts,” but you are encouraging team members to learn about and work
with other aspects of the code. Having such a cross-functional team not only reduces bottlenecks
in the development process but can also improve code quality by increasing the number of
people who work with—and thus implicitly review—code.

Agile Code at the Center
To be successful at agile, you need to consider the entire product lifecycle, from planning to
execution. You also need to be very aware of the challenges that the difference in approach will
present to teams that have a different initial mindset. In many ways, implementing agile technical
practices may present less resistance than planning practices, and, as long as your organization
wants to be more agile, working on the technical practices can help identify the other bottlenecks
to agile.

Content Images:
S_Berczuk_Agile_TW-AJ-CMC-SM_200x121.png [2]

Development & Deployment [3] agile [4] Agile Development [5] deployment [6] Project
Planning [7]

Development & Deployment agile Agile Development deployment Project Planning

Source URL: http://www.techwell.com/articles/original/agile-code-agile-teams

Links:
[1] http://www.techwell.com/members/berczuk
[2] http://www.techwell.com/sites/default/files/article/images/S_Berczuk_Agile_TW-AJ-CMC-SM_200x121.png
[3] http://www.techwell.com/category/topics/development-deployment
[4] http://www.techwell.com/category/other-keywords/agile
[5] http://www.techwell.com/category/other-keywords/agile-development
[6] http://www.techwell.com/category/other-keywords/deployment
[7] http://www.techwell.com/category/other-keywords/project-planning

