
1

Effective Teamwork and Practical 
Integration: Software 

Configuration Management in 
Context

September 20, 2004
Steve Berczuk

Agenda

• Introductions
• Background

– SCM and The Development Process.
– Patterns and SCM Pattern Languages.
– Software Configuration Management 

Concepts.

• SCM Patterns
• Questions



2

About Me

• Software Developer, Architect, Consultant
• Startup and established company 

experience
• Author
• Systems ranging from Travel Web sites, to 

enterprise systems, to space science 
systems.

• Agile and Iterative Development.

Who Are You?
Why are you here?

• Name
• Role in your organization
• What you hope to walk out of this session 

with.



3

Part I: Background/Foundation

Common Problems

• Code Freezes.
• “Builds for me…”
• “Works for me!”
• Long integration times at end of project.



4

What is Agile SCM?

• Individuals and Interactions over 
Processes and Tools
– SCM Tools should support the way that you 

work, not the other way around. 

• Working Software over Comprehensive 
Documentation
– SCM can automate development policies & 

processes: Executable Knowledge over 
Documented Knowledge. 

…What is Agile SCM?

• Customer Collaboration over Contract 
Negotiation.
– SCM should facilitate communication among 

stakeholders and help manage expectations.

• Responding to Change over Following a 
Plan.
– SCM is about facilitating change, not 

preventing it.



5

Traditional View of SCM

• Configuration 
Identification

• Configuration Control
• Status Accounting
• Audit & Review
• Build Management
• Process 

Management, etc

Effective SCM

• Who?
• What?
• When?
• Where?
• Why?
• How?



6

SCM as an Enabling Tool

• SCM Enables:
– Increased productivity
– Enhanced responsiveness to customers
– Increased quality

SCM Concepts



7

Part of the Puzzle

• Architecture
• Software 

Configuration 
Management

• Culture/Organization

What SCM Does for You

• Reproducibility
• Integrity
• Consistency
• Coordination



8

SCM Done Badly Can:

• Slow down development
• Frustrate developers
• Limit customer options

Alternate Definition of SCM

• SCM is a set of structures and actions that 
enable you to build systems in repeatable, 
agile fashion while improving quality and 
helping your customers feel more 
confident.

• SCM facilitates frequent feedback on build 
quality and product suitability.



9

Core SCM Practices

• Frequent feedback on build quality, and 
product suitability

• Version Management
• Release Management
• Build Management
• Unit & Regression Testing

SCM Concepts & Definitions

• Codeline/Branch
• Versioning Concepts

– Configuration
– Version
– Revision 
– Label

• Workspace



10

Codeline

• A codeline contains every version of every 
artifact over one evolutionary path.

R1R1

R2R2R1R1

R2R2

V1 V2 V3

Branching

• Branch: A codeline that contains work that derives 
(and diverges) from another codeline.

• Branch of a file: A revision of a file that uses the 
trunk revision as a starting point.

/branch

/main



11

Versions, Revisions and Labels

• Revision: An element at a point in time.
• Configuration: A snapshot of the codeline at a 

point in time.
• Version: A labeled configuration. 

R1R1

R2R2R1R1

R2R2

V2 V3V1

Workspace

• Everything you need to build an application:
– Code
– Scripts
– Database resources, etc



12

What are Patterns and 
Pattern Languages?

• A pattern is a solution to a problem in a 
context.

• Patterns capture common knowledge.
• Pattern languages guide you in the 

process of building something using 
patterns. Each pattern is applied in the 
correct way at the correct time.

Part II: The Patterns



13

Workspace Patterns

Active Development
Line

Private System
Build

Integration
Build

Third Party
Codeline

Smoke Test
Task Level

Commit
Repository

Unit Test Regression Test

Private Workspace

Codeline Patterns

Codeline Policy

Active Development 
Line

Private Versions Release Line
Release Prep

Codeline
Task Branch

Mainline



14

A Word about Context

• Smoke Test
“completes” Active 
Development Line.

• Smoke Test applies 
in the context of 
Active Development 
Line.

• Arrows point from 
context to the “next” 
pattern.

Active Development
Line

Smoke Test

Unit Test Regression Test

Effective Codeline Structures

• How many codelines should you be 
working from?

• What should the rules be for check-ins?
• Codelines are the integration point for 

everyone’s work.
• Codeline structure determines the rhythm 

of the project.



15

Mainline

• You want to simplify 
your codeline 
structure.

• How do you keep 
the number of 
codelines 
manageable (and 
minimize merging)?

Mainline (Forces & Tradeoffs)

• A Branch is a useful tool for isolating yourself 
from change.

• Branching can require merging, which can be 
difficult.

• Separate codelines seem like a logical way to 
organize work.

• You will need to integrate all of the work 
together.

• You want to maximize concurrency while 
minimizing problems cause by deferred 
integration.



16

Mainline (Solution)

• When in doubt, do all of your work off of a 
single Mainline.

Mainline (Unresolved)

• Simplicity with speed and enough stability: 
Active Development Line.

Active Development 
Line

Mainline



17

Active Development Line

• You are developing 
on a Mainline.

• How do you keep a 
rapidly evolving 
codeline stable 
enough to be useful 
(but not impede 
progress)?

Active Development Line 
(Forces & Tradeoffs)

• A Mainline is a synchronization point.
• More frequent check-ins are good.
• A bad check-in affects everyone.
• If testing takes too long: Fewer check-ins:

– Human Nature
– Time

• Fewer check-ins slow project’s pulse.



18

Active Development Line 
(Solution)

• Use an Active Development Line.
• Have check-in policies suitable for a “good 

enough” codeline. 

Active Development Line
(Unresolved)

• Doing development: Private Workspace
• Keeping the codeline stable: Smoke Test
• Managing maintenance versions: Release 

Line.
• Dealing with potentially tricky changes: 

Task Branch.
• Avoiding code freeze: Release Prep 

Codeline.



19

Active Development Line
Context

Active Development 
Line

Private Workspace Release Line
Release Prep

Codeline
Task Branch

Mainline

Private Workspace

• You want to support an 
Active Development 
Line.

• How do you keep 
current with a dynamic 
codeline and also 
make progress without 
being distracted by 
your environment 
changing from 
beneath you?



20

Private Workspace 
(Forces & Tradeoffs)

• Frequent integration avoids working with 
old code.

• People work in discrete steps: Integration 
can never be “continuous.”

• Sometimes you need different code.
• Too much isolation makes life difficult for 

all.

Private Workspace (Solution)

• Create a Private Workspace that contains 
everything you need to build a working 
system. You control when you get 
updates.

• Before integrating your changes:
– Update
– Build
– Test



21

Private Workspace (Unresolved)

• Populate the workspace: Repository.
• Manage external code: Third Party 

Codeline.
• Build and test your code: Private System 

Build.
• Integrate your changes with others: 

Integration Build.

Private Workspace
Context

Private
Workspace

Integration
Build

Private System
Build

Third Party
Codeline

Repository

Active Development
Line



22

Repository

• Private Workspace 
and Integration Build
need components.

• How do you get the 
right versions of the 
right components 
into a new 
workspace?

Repository (Forces & Tradeoffs)

• Many things make up a workspace: code, 
libraries, scripts.

• You want to be able to easily build a 
workspace from nothing.

• These components could come from a 
variety of sources (3rd Parties, other 
groups, etc).



23

Repository (Solution)

• Have a single point of access for 
everything.

• Have a mechanism to support easily 
getting things from the Repository.

Mapping from Repository to 
Workspace

/workspace/workspace

/src/src /lib/lib

/projectA/projectA

/Repository/Repository

/projectA/projectA /3Party/3Party

/cmpA/cmpA

/src/src /binary/binary

/src/src /cmpB/cmpB



24

Repository (Unresolved)

• Manage external components: Third Party 
Codeline

Private
Workspace

Integration
Build

Repository

Third Party
Codeline

Private System Build

• You need to build to 
test what is in your 
Private Workspace.

• How do you verify 
that your changes 
do not break the 
system before you 
commit them to the 
Repository?



25

Private System Build 
(Forces & Tradeoffs)

• Developer Workspaces have different 
requirements than the system integration 
workspace.

• The system build can be complicated.
• Checking things in that break the 

Integration Build is bad.

Private System Build (Solution)

• Build the system using the same 
mechanisms as the central integration 
build, a Private System Build.

• This mechanism should match the 
integration build.

• Do this before checking in changes! 
• Update to the codeline head before a 

build.



26

Private System Build 
(Unresolved)

• Testing what you built: Smoke Test.

Private
Workspace

Private System
Build

Smoke Test

Integration Build

• What is done in a 
Private Workspace
must be shared with 
the world.

• How do you make 
sure that the code 
base always builds 
reliably?



27

Integration Build 
(Forces & Tradeoffs)

• People do work independently.
• Private System Builds are a way to check 

the build.
• Building everything may take a long time.
• You want to ensure that what is checked-

in works.

Integration Build (Solution)

• Do a centralized build for the entire code 
base.



28

Integration Build (Unresolved)

• Testing that the product 
of the build still works: 
Smoke Test.

• Build products may need 
to be available for clients 
to check out.

• Figure out what broke a 
build: Task Level 
Commit.

Private
Workspace

Integration 
Build

Task Level
Commit

Smoke TestRepository

Third Party Codeline

• Private Workspaces
and the Repository
need the right 
versions of external 
components.

• How do you 
coordinate versions 
of external 
components with 
your versions?



29

Third Party Codeline 
(Forces & Tradeoffs)

• Vendor releases do not match your 
releases.

• Sometimes you alter external code (open 
source, etc) or apply patches.

Third Party Codeline (Solution)

• Use the same mechanisms as you do for 
your code to create a Third Party 
Codeline.

• Label the codeline to associate snapshots 
with your versions.

Third Party
Codeline

Repository
Private 

Workspace



30

Third Party Codeline (Structure)

/vendor

/build changes build changes

Vendor
Release 1

Vendor
Release 2

Task Level Commit

• You need to 
associate changes 
with an Integration 
Build.

• How much work 
should you do 
before checking in 
files?



31

Task Level Commit 
(Forces & Tradeoffs)

• The smaller the task, the easier it is to roll 
back.

• A check-in requires some work.
• It is tempting to make many small changes 

per check-in.
• You may have an issue tracking system 

that identifies units of work.

Task Level Commit (Solution)

• Do one commit per small-grained task.



32

Codeline Policy

• Active Development 
Line and Release 
Line (etc) need to 
have different rules.

• How do developers 
know how and when 
to use each 
codeline?

Codeline Policy 
(Forces & Tradeoffs)

• Different codelines have different needs, 
and different rules.

• You need documentation. (But how 
much?)

• How do you explain a policy?



33

Codeline Policy (Solution)

• Define the rules for each codeline as a 
Codeline Policy. The policy should be 
concise and auditable.

• Consider tools to enforce the policy.

Codeline
Policy

Private 
Versions

Release Line
Release Prep

Codeline
Task Branch

Active
Development

Line

Smoke Test

• You need to verify an 
Integration Build or a 
Private System Build
so that you can 
maintain an Active 
Development Line.

• How do you verify 
that the system still 
works after a 
change?



34

Smoke Test 
(Forces & Tradeoffs)

• Exhaustive testing is best for ensuring 
quality.

• The longer the test, the longer the check-
in, resulting in:
– Less frequent check-ins. 
– Baseline more likely to have moved forward.

Smoke Test (Solution)

• Subject each build to a Smoke Test that 
verifies that the application has not broken 
in an obvious way.



35

Smoke Test (Unresolved)

• A Smoke Test is not 
comprehensive. You 
will need to find:
– Problems you think are 

fixed: Regression Test
– Low level accuracy of 

interfaces: Unit Test

Integration
Build

Private System
Build

Smoke Test

Unit Test
Regression 

Test

Active Development
Line

Unit Test

• A Smoke Test is not 
enough to verify that 
a module works at a 
low level.

• How do you test 
whether a module 
still works after you 
make a change?



36

Unit Test (Forces & Tradeoffs)

• Integration identifies problems, but makes 
it harder to isolate problems.

• Low level testing is time consuming.
• When you make a change to a module 

you want to check to see if the module still 
works before integration so that you can 
isolate the problems.

Unit Test (Solution)

• Develop and run Unit Tests
• Unit Tests should be:

– Automatic/Self-evaluating
– Fine-grained
– Isolated
– Simple to run

Smoke Test

Unit Test



37

Regression Test

• A Smoke Test is good 
but not 
comprehensive.

• How do you ensure 
that existing code 
does not get worse 
after you make 
changes?

Regression Test 
(Forces & Tradeoffs)

• Comprehensive testing takes time.
• It is good practice to add a test whenever 

you find a problem.
• When an old problem recurs, you want to 

be able to identify when this happened.



38

Regression Test (Solution)

• Develop Regression Tests based 
on test cases that the system 
has failed in the past.

• Run Regression Tests whenever 
you want to validate the system.

Smoke Test

Regression
Test

Private Versions

• An Active Development 
Line will break if people 
check in half-finished 
tasks.

• How can you 
experiment with 
complex changes and 
still get the benefits 
of version 
management?



39

Private Versions 
(Forces & Tradeoffs)

• Sometimes you may want to checkpoint 
an intermediate step of a long, complex 
change.

• Your version management system 
provides the facilities for checkpointing.

• You don’t want to publish intermediate 
steps.

Private Versions (Solution)

• Provide developers with a mechanism for 
checkpointing changes using a simple interface.

• Implement as:
– Private History
– A Private Repository
– A Private Branch

• [Compare with Task Branch for long lived /joint 
efforts.]



40

Release Line

• You want to maintain 
an Active 
Development Line.

• How do you do 
maintenance on a 
released version 
without interfering 
with current work?

Release Line 
(Forces & Tradeoffs)

• A codeline for a released version needs a 
Codeline Policy that enforces stability.

• Day-to-day development will move too 
slowly if you are trying to always be ready 
to ship.



41

Release Line (Solution)

• Split maintenance/release 
activity from the Active 
Development Line and into a 
Release Line. 

• Allow the line to progress on its 
own for fixes.

Active 
Development

Line

Release Line

/main Release 1 work

/Release-1 fixes

Release Prep Codeline

• You want to maintain 
an Active Development 
Line.

• How do you stabilize 
a codeline for an 
imminent release 
while allowing new 
work to continue on 
an active codeline?



42

Release-Prep Codeline 
(Forces & Tradeoffs)

• You want to stabilize a codeline so you 
can ship it.

• A code freeze slows things down too 
much.

• Branches have overhead.

Release Prep Codeline 
(Solution)

• Branch instead of freeze. Create a 
Release Prep Codeline (a branch) 
when code is approaching release 
quality. 

• Leave the Mainline for active 
development.

• The Release Prep Codeline becomes 
the Release Line (with a stricter policy)

• Note: If only a few people are doing 
work on the next release, consider a 
Task Branch instead.

Active 
Development

Line

Release Prep 
Codeline



43

Task Branch

• Some tasks have 
intermediate steps that 
would disrupt an Active 
Development Line.

• How can your team 
make multiple, long-
term, overlapping 
changes to a codeline 
without compromising 
its integrity?

Task Branch 
(Forces & Tradeoffs)

• Version Management is a communication 
mechanism.

• Sometimes only part of a team is working 
on a task.

• Some changes have many steps.
• Branching has overhead.



44

Task Branch (Solution)

• Create a Task Branch off of the 
Mainline for each activity that has 
significant changes for a codeline.

• Integrate this codeline back into the 
Mainline when done.

• Be sure to integrate changes from 
the Mainline into this codeline as you 
go.

• [Compare with Private Versions.]

Active 
Development

Line

Task Branch

Wrap Up



45

The SCM Patterns Book

• Pub Nov 2002 By 
Addison-Wesley 
Professional.

• ISBN: 0201741172 

Other Books of Interest

Pragmatic Version 
Control

by Andy Hunt & 
Dave Thomas

JUnit Recipies

by J. B. Rainsberger

Pragmatic Project 
Automation

by Mike Clark



46

Other Pointers

• www.scmpatterns.com
• acme.bradapp.net
• www.berczuk.com
• www.cmcrossroads.com

• steve@berczuk.com

Questions?

• ? 


