
1

Copyright © 2005 Steve Berczuk

Collaborate, Integrate, Test,

Deploy: Essential SCM

Practices for Teams
Steve Berczuk

Sr. Software Engineer
Fast Search and Transfer, Inc.

Boston, MA

steve@berczuk.com

Copyright © 2005 Steve Berczuk

Agenda & Goals

• Agenda
!SCM and The Development Process

!SCM Concepts

!SCM Patterns for a More Agile Team

!Questions

• Goals:
– Discuss some common problems.

– Learn how taking a “Big Picture View” of SCM will you
make your process more effective.

– Understand how working with an Active Development
Line model simplifies your process

Copyright © 2005 Steve Berczuk

Opening Questions
• What is SCM?

– Version Management

– Configuration Identification

– Anything Else?

• Why do We do SCM?
– Control?

– Adaptability?

– Robustness?

• Who does SCM?
– Release Engineers?

– Developers?

– Customers?
Copyright © 2005 Steve Berczuk

The Problem: Ineffective SCM
• Not Enough Process:

– “Builds for me…”

– “Works for me!”

– “The build is broken again!”

– “What branch do I work off of?”

• Process Gets in the Way:
– Pre-check-in testing takes too long

– Code Freezes

• Long integration times at end of project
– “Fixing it” in integration

• Silos of Knowledge
– “I don’t know how this code works”

Copyright © 2005 Steve Berczuk

The Context

• SCM is Part of the

Puzzle:

– Architecture

– Software Configuration
Management

– Culture/Organization

The Goal: Working software that delivers value. Copyright © 2005 Steve Berczuk

Solution

• An Agile Approach to SCM

– Effective (not Unproductive) SCM

– Agile Manifesto Principles applied to SCM

• The SCM Pattern Language

– A Pattern Language to help you realize an

Agile SCM Environment

2

Copyright © 2005 Steve Berczuk

Traditional View of SCM

• Configuration

Identification

• Configuration Control

• Status Accounting

• Audit & Review

• Build Management

• Process

Management, etc

Copyright © 2005 Steve Berczuk

Agile/Effective SCM

• Who?

• What?

• When?

• Where?

• Why?

• How?

Focus on how processes add value.

Copyright © 2005 Steve Berczuk

What is Agile SCM?
• Individuals and Interactions over Processes and Tools

– SCM Tools should support the way that you work, not the other
way around

• Working Software over Comprehensive Documentation
– SCM can automate development policies & processes:

Executable Knowledge over Documented Knowledge

• Customer Collaboration over Contract Negotiation
– SCM should facilitate communication among stakeholders and

help manage expectations

• Responding to Change over Following a Plan
– SCM is about facilitating change, not preventing it

Copyright © 2005 Steve Berczuk

Agility and Transparency

• Agile methods emphasize feedback and

communication.

• Avoid process steps that don’t add value.

• Address issues, don’t just add processes

for comfort.

Copyright © 2005 Steve Berczuk

What Agile SCM is Not

• Lack of process

• Chaos

• Lack of control

Agile SCM is about having an Effective SCM

process that helps get work done.

Copyright © 2005 Steve Berczuk

Feedback and The Team

Development

QA

Product

Owners

Release

Engineering

Development

Release
Engineering

QA

Product
Owners

3

Copyright © 2005 Steve Berczuk

The Agile SCM Cycle

Build/Integrate

Commit

Code

Test

Resynch

Frequently

Copyright © 2005 Steve Berczuk

Agenda

• Agenda

"SCM and The Development Process

!SCM Concepts

!SCM Patterns for a More Agile Team

!Questions

Copyright © 2005 Steve Berczuk

SCM Definitions

• Codeline/Branch

• Versioning Concepts

– Configuration

– Version

– Revision

– Label

• Workspace

Copyright © 2005 Steve Berczuk

Codeline

• A codeline contains every version of every

artifact over one evolutionary path.

R1

R2R1

R2

V1 V2 V3

Copyright © 2005 Steve Berczuk

Versions, Revisions, Labels

• Revision: An element at a point in time

• Configuration: A snapshot of the codeline

Version: A labeled configuration

R1

R2R1

R2

V2 V3V1

Copyright © 2005 Steve Berczuk

Branches

• Branch: A codeline that contains work that derives

(and diverges) from another codeline.

• Branch of a file: A revision of a file that uses the trunk

revision as a starting point.

/branch

/main

4

Copyright © 2005 Steve Berczuk

Workspace

• Everything you need to build an application:

– Code

– Scripts

– Database resources, etc

Copyright © 2005 Steve Berczuk

Agenda & Goals

• Agenda

"SCM and The Development Process

"SCM Concepts

!SCM Patterns for a More Agile Team

!Questions

Copyright © 2005 Steve Berczuk

Creating an Agile SCM Environment

• Decide on a goal.

• Choose an appropriate Codeline Structure and set up
the related policy.

• Create a process to set up workspaces
– Private

– Integration

• Build & Deploy is an Iteration 0 Story.

• Integrate frequently at all levels
– Developer Workspace

– Integration Build

• Deploy frequently.

• Test.
Copyright © 2005 Steve Berczuk

The SCM Pattern Language
Mainline

Private

Workspace

Active Development

 Line

Integration

Build

Private

System Build

Repository

Third Party

Codeline

Task Level

Commit

Release Line
Private

 Versions
Task Branch

Release-Prep

Codeline

Codeline

Policy

Regression

Test
Unit Test

Smoke Test

Build TestCollaborate

Copyright © 2005 Steve Berczuk

Patterns and Pattern Languages

• A pattern is a solution to a problem in a

context

• Patterns capture common knowledge

• Pattern languages guide you in the

process of building something using

patterns

– Each pattern is applied in the correct way at

the correct time

Copyright © 2005 Steve Berczuk

Context

• Smoke Test
“completes” Active
Development Line

• Smoke Test applies
in the context of
Active Development
Line

• Arrows point from
context to the “next”
pattern

Active Development

Line

Smoke Test

Unit Test Regression Test

5

Copyright © 2005 Steve Berczuk

Mainline

• You want to simplify

your codeline

structure.

• How do you keep

the number of

codelines

manageable (and

minimize merging)?

Copyright © 2005 Steve Berczuk

Mainline (Forces & Tradeoffs)

• A Branch: tool for isolating yourself from change.

• Branching can require merging.
– Merging can be difficult.

• Separate codelines: a way to organize work.

• Integration with everyone’s work is required.

• You want to:
– maximize concurrency

– minimize problems cause by deferred integration.

Copyright © 2005 Steve Berczuk

Mainline (Solution)

• When in doubt, do all of your work off of a single
Mainline.
– Understand why you want to branch

– Consider the costs.

• Unresolved:
– Simplicity with speed and enough stability:

Active Development Line

Active Development

Line

Mainline

Copyright © 2005 Steve Berczuk

Active Development Line

• You are developing

on a Mainline.

• How do you keep a

rapidly evolving

codeline stable

enough to be useful

(but not impede

progress)?

Copyright © 2005 Steve Berczuk

Active Development Line

(Forces)

• A Mainline is a synchronization point.

• More frequent check-ins are good.

• A bad check-in affects everyone.

• If testing takes too long: Fewer check-ins:

– Human Nature

– Time

• Fewer check-ins slow a project’s rhythm.

Copyright © 2005 Steve Berczuk

Active Development Line

• Use an Active Development Line.

• Have check-in policies suitable for a
“good enough” codeline.

• Establish practices to give feedback on
the state of the codeline.

• Unresolved:
– Doing development: Private Workspace

– Keeping the codeline stable: Smoke Test

– Managing maintenance versions: Release Line

– Dealing with potentially tricky changes: Task Branch

– Avoiding code freeze: Release Prep Codeline

Active Development

Line

Private
Workspace

Release Line

Release Prep

Codeline

Task Branch

Mainline

6

Copyright © 2005 Steve Berczuk

Private Workspace

• You want to support an

Active Development

Line.

• How do you keep

current with a dynamic

codeline and also

make progress without

being distracted by

your environment

changing from

beneath you?

Copyright © 2005 Steve Berczuk

Private Workspace (Forces)
• Frequent integration helps avoid working

with old code.

• People work in discrete steps: Integration

can never be “continuous.”

• Sometimes you need different code.

• Too much isolation makes life difficult.

Copyright © 2005 Steve Berczuk

Private Workspace (Solution)

• Create a Private Workspace

– It contains everything needed to build a

working system.

– You control when you get updates.

• Before integrating your changes:

– Update your workspace.

– Build your workspace.

– Test your code and the system.

Copyright © 2005 Steve Berczuk

Private Workspace Example
• Workspace

– App Server

– Database Schema

– Code for Web App

– Test CRS Login

– (Build/Deploy and

Configuration

Tools & Scripts)

Copyright © 2005 Steve Berczuk

Private Workspace (Unresolved)
• Populate the workspace: Repository

• Manage external code: Third Party Codeline

• Build and test your code: Private System Build

• Integrate your changes with others: Integration
Build

Private

Workspace

Integration

Build

Private System

Build

Third Party

Codeline
Repository

Active Development

Line

Copyright © 2005 Steve Berczuk

Repository

• Private Workspace

and Integration Build

need components.

• How do you get the

right versions of the

right components

into a new

workspace?

7

Copyright © 2005 Steve Berczuk

Repository (Forces & Tradeoffs)

• Many things make up a workspace:

– Code

– Libraries

– Scripts.

• You want to be able to easily build a

workspace from nothing.

• Components could come from a variety of

sources (3rd Parties, other groups, etc).

Copyright © 2005 Steve Berczuk

Repository (Solution)

• Have a single point of access for everything.

• Have a mechanism to support easily getting
things from the Repository.
– Install Version Manager Client

– Get Project from Version Management

– Build, Deploy, Configure (Ant target, Maven goal)

– Simple, repeatable process.

• Unresolved:
– Manage external components:

Third Party Codeline

Private

Workspace

Integration

Build

Repository

Third Party

Codeline

Copyright © 2005 Steve Berczuk

Types of Tests

Low

Low

High

Isolation PurposeCreatedAuthorCommon Name

Verify that
problems do

not resurface

Post ReleaseSupport
QA

Developer

Regression

Verify

minimal

operation.

“Integration”Developer

QA

Smoke

(Integration)

Testing

functional
components

During Unit

Dev

DeveloperUnit/Programmer

Copyright © 2005 Steve Berczuk

Smoke Test

• You need to verify an
Integration Build or a
Private System Build
so that you can
maintain an Active
Development Line.

• How do you verify
that the system still
works after a
change?

Copyright © 2005 Steve Berczuk

Smoke Test (Forces)

• Exhaustive testing is best for ensuring quality.

• Longer tests imply longer check-ins

– Less frequent check-ins.

– Baseline more likely to have moved forward.

• People have a need to move forward.

• Stakeholders have a need for quality and

progress.

• Test Execution Time is often idle time.

Copyright © 2005 Steve Berczuk

Smoke Test (Solution)

• Subject each build to a Smoke
Test that verifies that the
application has not broken in an
obvious way.

• A Smoke Test is not
comprehensive. You will need to
find:
– Problems you think are fixed:

Regression Test

– Low level accuracy of interfaces:
Unit Test

Integration

Build
Private System

Build

Smoke Test

Unit Test
Regression

Test

Active Development
Line

8

Copyright © 2005 Steve Berczuk

Unit Test

• A Smoke Test is not

enough to verify that

a module works at a

low level.

• How do you test

whether a module

still works after you

make a change?

Copyright © 2005 Steve Berczuk

Unit Test (Forces)

• Integration identifies problems

– But makes it harder to isolate problems.

• Low level testing is time consuming.

• When you make a change to a module

you want to check to see if the module still

works before integration

– You want to isolate problems.

Copyright © 2005 Steve Berczuk

Unit Test (Solution)

• Develop and run Unit Tests

• Unit Tests should be:

– Automatic/Self-evaluating

– Fine-grained

– Isolated

– Simple to run

• Also known as Programmer Tests
- J.B. Rainsberger

Smoke Test

Unit Test

Copyright © 2005 Steve Berczuk

Regression Test

• A Smoke Test is good

but not comprehensive.

• How do you ensure

that existing code

does not get worse

after you make

changes?

Copyright © 2005 Steve Berczuk

Regression Test (Forces)

• Comprehensive testing takes time.

• It is good practice to add a test whenever

you find a problem.

– You can’t anticipate everything.

• When an old problem recurs you want to

be able to identify when this happened.

Copyright © 2005 Steve Berczuk

Regression Test (Solution)

• Develop Regression Tests based

on test cases that the system

has failed in the past.

• Run Regression Tests whenever

you want to validate the system.

• You can run these tests as part

of an automated Integration build

(nightly or more frequently).

Smoke Test

Regression

Test

9

Copyright © 2005 Steve Berczuk

Release Line

• You want to maintain an

Active Development

Line.

• How do you do

maintenance on a

released version

without interfering with

current work?

Copyright © 2005 Steve Berczuk

Release Line (Forces)

• A codeline for a released version needs a

Codeline Policy that enforces stability.

• Day-to-day development will move too

slowly if you are trying to always be ready

to ship.

Copyright © 2005 Steve Berczuk

Release Line (Solution)

• Split maintenance/release

activity from the Active

Development Line into a

Release Line.

• Allow the line to progress on its

own for fixes.

• Propagate changes to Mainline

as appropriate.

Active

Development

Line

Release Line

/main Release 1 work

/Release-1 fixes

Copyright © 2005 Steve Berczuk

Private System Build

• You need to build to

test what is in your

Private Workspace.

• How do you verify

that your changes

do not break the

system before you

commit them to the

Repository?

Copyright © 2005 Steve Berczuk

Private System Build (Forces)
• Developer Workspaces have different

requirements than the system integration

workspace.

• The system build can be

– Complicated.

– Time Consuming.

• Checking things in that break the

Integration Build is bad.

Copyright © 2005 Steve Berczuk

Private System Build (Solution)

• Build the system using the same
mechanisms as the central integration build,
a Private System Build.
– This mechanism should match the integration

build.

– Do this before checking in changes!

– Update to the codeline head before a build.

• Unresolved:
– Testing what you built: Smoke Test

Private

Workspace

Private System

Build

Smoke Test

10

Copyright © 2005 Steve Berczuk

Integration Build

• What is done in a

Private Workspace

must be shared with

the world.

• How do you make

sure that the code

base always builds

reliably?

Copyright © 2005 Steve Berczuk

Integration Build (Forces)

• People do work independently.

• Private System Builds are a way to check

the build.

• Building everything may take a long time.

• You want to ensure that what is checked-

in works.

Copyright © 2005 Steve Berczuk

Integration Build (Solution)
• Do a centralized build for the entire code base.

– Use automated tools: Cruise Control, SCM tool

Triggers, etc

• Still Unresolved:
– Testing that the product of the build still works: Smoke Test

– Build products may need to be available for clients to check
out

– Figure out what broke a build: Task Level Commit

Private Workspace

Integration Build

Task Level

Commit Smoke Test
Repository

Copyright © 2005 Steve Berczuk

Task Level Commit

• You need to

associate changes

with an Integration

Build.

• How much work

should you do

before checking in

files?

Copyright © 2005 Steve Berczuk

Task Level Commit (Forces)

• The smaller the task: easier roll back.

• A check-in requires some work.

• It is tempting to make many small changes

per check-in.

• You may have an issue tracking system

that identifies units of work.

Copyright © 2005 Steve Berczuk

Task Level Commit (Solution)
• Do one commit per small-grained task.

11

Copyright © 2005 Steve Berczuk

Codeline Policy

• Active Development

Line and Release

Line (etc) need to

have different rules.

• How do developers

know how and when

to use each

codeline?

Copyright © 2005 Steve Berczuk

Codeline Policy (Forces)

• Different codelines have different needs,

and different rules.

• You need documentation.

– But how much?

• How do you explain a policy?

Copyright © 2005 Steve Berczuk

Codeline Policy (Solution)

• Define the rules for each codeline as a

Codeline Policy.

– The policy should be concise and auditable.

• Consider tools to enforce the policy.

Codeline

Policy

Private
Versions

Release Line
Release Prep

Codeline
Task Branch

Active

Development

Line

Copyright © 2005 Steve Berczuk

Sample Codeline Policies

• Active Development Line

• Release Line

• Other

Copyright © 2005 Steve Berczuk

Policies: The Tofu Scale
• Consider:

– How close software is to
being released.

– How thoroughly must
changes be reviewed and
tested.

– How much impact a
change has on schedules.

– How much a codeline is
changing.

• See Practical Perforce
Laura Wingerd
Perforce Software) for
more info

Release

Mainline

Development

Firm

Soft

Copyright © 2005 Steve Berczuk

Release Prep Codeline

• You want to maintain

an Active Development

Line.

• How do you stabilize

a codeline for an

imminent release

while allowing new

work to continue on

an active codeline?

12

Copyright © 2005 Steve Berczuk

Release-Prep Codeline (Forces)

• You want to stabilize a codeline so you

can ship it.

• A code freeze is the traditional approach

– Slows rhythm too much.

• Branches have overhead.

Copyright © 2005 Steve Berczuk

Release Prep Codeline

(Solution)
• Branch instead of freeze.

– Create a Release Prep Codeline (a

branch) when code is approaching

release quality.

• Leave the Mainline for active work.

• The Release Prep Codeline

becomes the Release Line

– Release line has a stricter policy.

Active

Development

Line

Release Prep

Codeline

Copyright © 2005 Steve Berczuk

Essential SCM Practices

• Frequent feedback on build quality and

product suitability through:

– Version Management

– Release Management

– Build Management

– Unit & Regression Testing

• These steps enable agility.

Copyright © 2005 Steve Berczuk

Resources/Places to Go
• www.scmpatterns.com

• www.berczuk.com

• www.cmcrossroads.com

• steve@berczuk.com

• Software Configuration
Management Patterns:Effective

Teamwork, Practical Integration

Copyright © 2005 Steve Berczuk

Other Books of Interest

Pragmatic Version

Control Using CVS

by Andy Hunt &

Dave Thomas

JUnit Recipies

by J. B. Rainsberger

Pragmatic Project

Automation

by Mike Clark

Pragmatic Version

Control Using

Subversion 2ed

by Mike Mason

Copyright © 2005 Steve Berczuk

The SCM Patterns Book

• Pub Nov 2002 By

Addison-Wesley

Professional.

• ISBN: 0201741172

13

Copyright © 2005 Steve Berczuk

Questions?

