
Agile Codeline Management Page 1 of 5

Agile Codeline Management
Steve Berczuk

Independent Consultant

Software Developers often view version management tools
and techniques as a necessary evil. This is particularly true
of developers practicing agile techniques. However,
Version Management properly applied can be an aid to
agility rather than something that gets in the way.

A version of this article appeared as a StickyMinds Original article on May 31,
2003. http://www.stickyminds.com/r.asp?F=DART_6484.

Software configuration management (SCM) techniques have a reputation as something to
tolerate as a necessary evil, in spite of the fact that they appear to make development
more complicated. With time developers see the benefit of version control, but often they
have the impression that SCM is “important” in some not understood way. The fear is
particularly acute when it comes to codeline management, especially when the word
“branch” is mentioned.

In this article I will explain the concept of Agile Software Configuration Management,
and give an example of how one of the more feared codeline management concepts the
branch, can be understood as a tool for agility. This is one example of why version
management is part of the software developer’s toolkit, even the agile developer’s toolkit.

What is Agile Software Development?
In his book, Agile Software Development Ecosystems, Jim Highsmith says that “Agility is
the ability to both create and respond to change in order to profit in a turbulent business
environment.” A team that practices Agile Software Development is one that is
responsive rather than weighed down by process and which embraces these values (From
the Agile Manifesto: www.agilemanifesto.org):

• To Value individuals and interactions processes and tools

• To Value working software over comprehensive documentation

• To Value customer collaboration over contract negotiation

• To Value responding to change over following a plan

 Extreme Programming and SCRUM are two of the popular methods for agile software
development.

Agile and SCM
Developers often have a fear that SCM techniques beyond basic version management
adds complexity to the development process and slows down progress. It is true that
inappropriate use of SCM techniques, such as branching, can do more harm than good to

Agile Codeline Management Page 2 of 5

your project. The correct application of SCM tools and techniques can give you the
courage to forge ahead quickly since you know that there will be little risk that you will
get lost.

SCM is often associated with heavyweight “Process.” When you apply SCM
appropriately it becomes a tool to enable your approach to software development to work
more effectively.

Agile SCM applies the values of the Agile Manifesto in this way:

• Individuals and Interactions over Processes and Tools

o SCM Tools should support the way that you work, not the other way
around. Often the reason behind frustrating SCM processes is trying to fit
a tool that imposes a process into an organization that needs a much
different kind of process.

• Working Software over Comprehensive Documentation

o Executable Knowledge over Documented Knowledge. SCM can automate
development policies and processes, so you can both make things easy for
developers and ensure that necessary procedures are followed by writing
scripts instead of documenting procedures.

• Customer Collaboration over Contract Negotiation

o SCM should facilitate communication among stakeholders and help
manage expectations. By using the appropriate codeline structures you can
keep make it easier to create snapshots of the current state of the system
and make it easier for stakeholders to see them.

• Responding to Change over Following a Plan

o SCM is about facilitating change, not preventing it. Create codeline
structures that isolate the components that need to be kept stable from
those that are in active development; don’t make the entire team move at
the pace of the more restrictive components.

To understand how to structure codelines for agility you need to understand the concepts
codeline and codeline policies.

Agile Codelines
A codeline is a progression of the set of source files and other artifacts that make up some
software component as it changes over time. You can have multiple codelines for a
project that are independent of each other. For example, you can do your development
work on one codeline (The Mainline), and managed library code from other vendors on a
separate codeline (Third Party Codeline). When you create your workspace for
development you would have a script that checks-out the appropriate versions of the
appropriate components from each codeline into your workspace.

Each codeline has a codeline policy associated with it. The codeline policy describes how
the codeline is to be used. This includes things like:

Agile Codeline Management Page 3 of 5

• How often to check in changes.

• How much testing and validation is required before a check-in.

• Who can check in changes and when.

For example, during development on the Mainline, you may encourage people to check
things in frequently, but you want to control changes to the Third Party Codeline more
closely.

There are many approaches to managing codelines and deciding how few, or how many
codelines to have for a project. The most effective, approach for agile environments is to
do all of your work on a single codeline, a Mainline, perhaps supplemented by some
components from a Third Party Codeline.

Mainline development by itself is not enough for agile development though. Agile
development requires frequent integration. If you have a policy of maintaining a Mainline
of shippable quality at all times, you may find that the cost of checking-in code is high
enough that developers will check-in only once or twice a day. For example, if you verify
quality by an exhaustive set of tests that take an hour to run, there is an incentive to code
as much as possible before starting the test, say before going out to lunch. (This also
means the there were a lot of changes in each checkin, making it harder to determine
what broke.) If you take the further step of making sure that only one person is checking
code in a a time using a semaphore mechanism, you could be locking out the entire team.

An Active Development Line approach has advantages if you don’t need to be 100% sure
that the codeline is perfect on a minute to minute basis. With the appropriate use of
simple tests like Unit Tests and Smoke Tests, developers can check code in quickly, and
exhaustive tests such as Regression Tests can run on an integration machine periodically.

Branches
Single Active Development Line has many advantages in terms of simplicity,
consistency, and minimizing duplication. There would be many advantages to always
delivering a product off of the current active codeline. There are some situations where
you discover that there are benefits to having a version of the code evolve independently
for a strictly limited time. This is where creating a branch is useful, especially in an agile
environment (or an environment trying to be more agile).

A common branching pattern is a Release Line. Consider a scenario where you deliver an
application to the customer, and then start work on the next version. In spite of what you
imagined to be thorough testing, your customer finds a critical problem in the code. You
have three choices: ignore the problem until the next release is done, get the current
codeline in shape to ship the customer a new version based, or provide the customer with
a fix based on the version that they have. Each solution has merits and disadvantages, but
you should make your decision based on the needs of the situation rather than fear.

Ignore It
If you have a frequent enough release cycle it may be feasible to ask the customer to wait
until the next release. Whether this is feasible depends on the severity of the issues,

Agile Codeline Management Page 4 of 5

whether there is any procedural work around that the customer can do, and how much
good will you may lose with the customer.

Provide a fix based on the mainline
If waiting until the next release is not a viable option you need to provide a fix. One way
is to ship a version of the mainline after verifying that the mainline code is compatible
with what the customer has now, and also after ensuring that the same problem does not
occur in the mainline. There are many advocates of this approach, especially among those
who advocate agile software development. Deciding whether this is a good solution to the
problem depends on a number of social and engineering issues that involve what the
customer is willing to accept and how much the architecture supports it.

Branch
The third option is to provide a fix based on the code that you shipped to the customer.
When you ship a product you can create a Release Line that represents the evolution of
that version of the code. A Release Line is active only as long as you need to support that
release, typically until the next release ships. If all goes well you may make no changes to
a release line. In addition to being based on the shipped codebase, a release line typically
has a stricter codeline policy that requires more exhaustive testing and verification before
changes are checked into it.

A release line frees you by letting you continue to move forward with the current
codeline while still being able to address customer needs.

The Trouble with Branches
Working off a branch is not without its costs. One concern, especially in the agile
community, is that a release line is “more work” since you may have to make changes in
two places: the Mainline and the Release Line. In addition to this people often associate a
branch with a messy merge process. In some cases you may not need to merge, or even
duplicate changes. If you are following agile development practices, you may find that
you have done a good deal of refactoring so that a merge does not make sense because
the code bases have diverged so much. Indeed you may have made enough changes to the
mainline the customer issue with the release may be irrelevant to the mainline.

To keep a Release Line manageable keep it short lived. Work off of the Release Line
only when necessary. If there are other ways to support your application use them.
Consider branching only when it would be more disruptive to provide support using the
Mainline. Limit how long you provide support for a give customer release. Maintainence
and support for a number of old releases can be a drain on resources. The best thing to do
is to encourage your customers to upgrade. Luke Hohmann discusses this in Beyond
Software Architecture: Creating and Sustaining Winning Solutions. Solutions to this
approach can involve architecture, marketing, or quality.

Agile Codeline Management Page 5 of 5

Conclusions
In some cases, creating a branch is the “simplest thing that could possibly work,” and is
appropriate, even when you are doing Agile Software Development or Extreme
Programming. The key is to understand why you are branching, and what other solutions
could work instead, and what the relative costs are.

Acknowledgements
Brad Appleton and Ron Jeffries gave me valuable feedback on this article.

Biography:
Biography: Steve Berczuk has been developing object-
oriented software applications since 1989. Steve is the
author (with Brad Appleton) of the book Software
Configuration Management Patterns: Effective Teamwork,
Practical Integration, published by Addison-Wesley. He
has an M.S. in Operations Research from Stanford
University and an S.B. in Electrical Engineering from MIT.
You can contact Steve at steve@berczuk.com. His web site
is www.berczuk.com.

