
5	November	2023	 1	

SCM Patterns Looking Back and Moving Forward
Steve	Berczuk	steve@berczuk.com	

Riva	Health	

The	Software	Configuration	Management	Pattern	Language	had	its	origins	in	
patterns	workshopped	at	some	of	the	first	PLoP	conferences	and	was	published	in	
the	book	Software	Configuration	Management	Patterns	in	2001.	This	paper	
provides	an	overview	of	the	pattern	language,	discusses	lessons	learned	as	well	as	
it’s	impact	and	durability,	and	explores	some	possible	future	directions	for	the	
pattern	language.	

	 	

5	November	2023	 2	

	

Goals
The	Software	Configuration	Management	Pattern	Language	(SCM	Patterns)	had	its	origins	
in	patterns	workshopped	at	some	of	the	first	PLoP	conferences,	and	Streamed	Lines	[2].	It	
was	published	in	the	book	Software	Configuration	Management	Patterns	[3]	in	2001.	

This	paper	discusses	the	impact	and	durability	of	the	SCM	pattern	language	and	explores	
some	possible	future	extensions.	

The	overall	goal	of	this	paper	is	to	identify:	

• Ways	to	make	the	SCM	Pattern	Language	more	useful	to	more	teams	
• General	lessons	for	authors	of	pattern	languages	to	create	more	valuable,	and	

approachable,	pattern	languages	

This	paper	has	three	main	parts:	

• The	origins	and	history	of	the	Pattern	Language.	
• Lessons	learned	since	the	Pattern	Language	was	published:	

– Feedback	we	received	about	the	patterns	over	time.	
– Areas	where	the	pattern	language	might	have	gotten	stale.	
– Reasons	why	the	pattern	language	is	still	relevant	and	useful.	

• The	pattern	language:	
– An	overview	of	the	existing	patten	language.	
– A	brief	summary	of	possible	additions	and	changes.	

I	also	hope	to	make	the	case	that	The	SCM	Pattern	Language	is	not	just	about	how	to	build	
effective	codelines,	but	also	that	codelines	are	the	path	that	connects	a	backlog	with	a	
deliverable;	I’m	developing	this	extended	SCM	Pattern	Language	for	a	new	book.	

Origins of the SCM Pattern Language
This	section	discusses	the	history	of	the	pattern	language	and	the	reasons	we	wrote	it.	

Configuration	Management	Patterns	emerged	from	material	that	Brad	Appleton	and	I	—	
individually	and	collectively	—	workshopped	at	PLoP	and	during	ChiliPLoP	1998	in	
Wickenburg	AZ.		

The	Software	Configuration	Management	Patterns	Pattern	Language	is	a	guide	to	how	to	
build	codelines	to	facilitate	frequent	delivery.	The	pattern	language	is	about	creating	
codelines	that	facilitate	frequent,	iterative,	collaboration	—	a	good	practice	for	any	team,	
agile	or	not.	I	was	motivated	to	document	the	patterns	as	I	observed	some	teams	struggling	
with	basic	release	management,	seemingly	unaware	of	practices	many	other	teams	were	
using	effectively.	

5	November	2023	 3	

The	SCM	Pattern	Language	has	elements	of	an	organizational/process	pattern	language	
rather	than	one	about	system	design.	Codelines	sit	at	a	nexus	between	Project	Process	(ie,	
Scrum),	Development	Process	(using	techniques	like	TDD,	or	DevOps),	and	Design,	so	that	
in	addition	to	branching	patterns	the	original	pattern	language	includes	patterns	about:	

• Testing	
• Developer	Workspaces	

An	effective	SCM	process	helps	a	team	focus	on	writing	code	that	delivers	value,	rather	than	
arcane	details	about	branching	techniques.	Adopting	a	consistent	process	helps	you	to	
focus	on	answering	hard	questions,	rather	than	day	to	day	mechanics.	

Since	the	original	publication,	there	have	been	changes	in	the	development	ecosystem	that	
lead	to	a	need	to	update	the	SCM	Pattern	Language:	

• Common	Practice:	CI/CD,	DevOps,	and	Agile	are	widely	known,	if	not	practiced	
perfectly.	

• SCM	Tooling:	SCM	Tools	implement	some	of	the	patterns	directly.	

• IDEs	and	CI	Platforms,	including	AI	extensions,	make	it	easier	to	identify	problems	
in	the	developer	workspace.	

Fit for Patterns

Software	Configuration	Management	Patterns	differs	from	other	SCM	“Best	Practices”	work:	

• It	uses	the	framework	of	a	pattern	language.	
• It	is	tool	and	process	framework	agnostic.	

The	feedback	from	PLoP	workshops	gave	us	high	confidence	that	the	patterns	we	were	
writing	were	good	candidates	for	patterns	and	not	just	“good	ideas	in	pattern	form”	
because:	

• Each	codeline	element	worked	best	in	the	context	of	other	patterns,	both	codeline	
and	process	related.	The	pattern	form	makes	context	explicit	and	reflects	the	reality	
that	a	process	lives	in	the	context	of	other	organizational	practices.	

• Successfully	using	the	practices	that	the	patterns	describe	seemed	correlated	with	
success	in	delivery.	

Alternatives to an SCM Pattern Language

Branching	and	codeline	process	decisions	are	often	based	on	history,	trends,	aspirations,	or	
even	fear.	While	there	are	certain	things	that	qualify	as	“best	practices”	they	often	have	a	
context.	

5	November	2023	 4	

Many	branching	strategies	attempt	to	improve	reliability	by	slowing	down	integration:	

• Developers	merge	to	a	“develop”	branch,	which	is	only	merged	with	the	“Main	Line”	
after	some	vetting	or	even	after	a	release.	

• The	“Main	Line”	receives	few	merges.	

For	example,	Git	Flow[10]	–	a	branching	model	that	involves	the	use	of	feature	branches	
and	multiple	primary	branches	might	be	a	great	approach	for	an	open	source	project	that	
has	a	variety	of	committers	and	a	set	of	gatekeepers.	For	a	small	agile	product	team	with	a	
unified	goal	Git	Flow	can	add	risk	and	overhead.	Someone	might	be	using	Git	Flow	because	
“it’s	popular	in	open	source,”	ignoring	the	detail	that	the	context	for	their	project	is	
different.	SCM	Patterns	was	meant	to	help	teams	find	approaches	to	branching	and	delivery	
that	aligned	with	their	goals	and	development	practices.		

The	SCM	Pattern	Languages	creates	structures	that	make	it	easier	to	merge	to	the	Mainline	
quickly	with	short	lived	task	branches,	and	structures	that	support	creating	an	
environment	that	enabled	one	to	merge	with	confidence	that	the	codeline	would	not	break.	

The	goal	of	the	pattern	language	is	to	help	teams	get	past	making	branching	process	
decisions	based	on	intuition,	risk	aversion,	or	even	hype,	and	to	be	able	to	follow	a	
sustainable	process.	While	the	pattern	language	specifies	some	structure	it	is	adaptable,	
unlike	other	more	prescriptive	approaches.	

SCM Patterns in Brief (Original Pattern Language)
A	brief	overview	of	the	Pattern	Language	will	help	set	the	context	for	the	discussion.	

The	goal	of	the	SCM	pattern	language	is	to	help	teams	get	past	making	branching	process	
decisions	based	on	intuition,	risk	aversion,	or	even	hype,	and	to	be	able	to	follow	a	sustainable	
process.	

This	section	has:	

• A	diagram	of	the	pattern	language.	
• A	summary	of	each	pattern	that	includes:	

– The	name	of	the	pattern.	
– The	problem	the	pattern	addresses	
– A	brief	description	of	the	pattern	and	the	value	it	adds.	
– Optionally,	brief	commentary	on	its	current	relevance.		

The	diagram	below	shows	the	structure	of	the	pattern	language,	including	context	
relationships,	as	indicated	by	arrows.	For	example,	the	arrow	from	Private	Workspace	to	
Integration	Build	means	that	Private	Workspace	sets	the	context	for	Integration	Build:	

• You	would	want	Integration	Build	if	you’ve	implemented	Private	Workspace.	
• Integration	Build	supports	the	Private	Workspace	pattern.	

5	November	2023	 5	

The	arrows	can	also	indicate	a	sequence	of	how	to	approach	the	patterns	in	terms	of	goals	
and	deliverables,	so	that	the	Pattern	Language	moves	from	high	level	to	details.	

Patterns	which	would	be	removed	in	an	update	are	in	light	gray	with	strikethrough	text.	
The	rational	for	the	change	is	noted	in	the	summary	commentary.	

	

Diagram	of	the	Pattern	Language	(2001)	

	

Main Line

Keep	the	number	of	active	code	lines	to	a	manageable	set	by	maintaining	a	Mainline.	

Main	Line	is	similar	to	Trunk	Based	Development	but	doesn’t	preclude	short	lived	
branches.	Mainline	sets	the	context	for	all	the	other	patterns.	All	codelines	integrate	with	
the	Mainline	(with	possible	exception	of	emergency	fix	branches	off	a	Release	Line	and	
branches	related	to	Private	Versioning).	

Main	Line	is	still	central	to	good	SCM	Practices.	Develop	processes	to	integrate	all	work	to	
the	main	line	as	quickly	as	possible,	while	maintaining	the	Mainline	in	a	working	state	—	
using	the	patterns	in	the	rest	of	the	pattern	language.	Even	if	you	were	to	never	branch,	the	
workspace,	build,	and	change/commit	patterns	would	apply.	

	

Active Development Line (removed: redundant)

Keep	a	rapidly	evolving	Main	Line	stable	by	creating	an	Active	Development	Line.	

An	Active	Development	line	is	a	Mainline	that	always	works,	so	this	is	redundant.			

Active	Development	Line	was	an	artifact	of	getting	overenthusiastic	about	decomposition	of	
patterns.	These	two	patterns	are	grouped	together	in	the	diagram	for	that	reason.	

	

5	November	2023	 6	

Private Workspace

Prevent	integration	issues	from	distracting	you	and	from	your	changes	causing	others	
problems	when	working	with	a	Main	Line	by	developing	in	a	Private	Workspace.	

Consistent	build,	test,	and	execution	environments	are	essential	to	agile	development.		

Private	Workspace	is	still	relevant,	though	much	simpler	to	implement	given	the	availability	
of	better	dependency	and	package	management	tools,	as	well	as	containers.	

	

Repository (removed: trivial)

Set	up	a	new	Private	Workspace		or	Integration	Build	Workspace	by	populating	it	from	a		
Repository	that	contains	everything	that	you	need.	

A	Repository	enables	creation	of	a	Private	Workspace	as	well	as	an	Integration	Build.		

In	practice	Maven	or	PyPy	Repositories,	container	repositories,	and	other	(for	example,	the	
Go	Module	System)	with	a	source	code	repository	make	this	trivial.	

	

Private System Build

Check	to	see	that	changes	you	make	in	your	Private	Workspace	will	not	break	the	build	by	
doing	a	Private	System	Build	before	committing	changes	to	the	Repository.	

This	seems	basic,	though	I	still	encounter	scenarios	where	people	use	a	pull	request	CI	
build	to	build	and	test.	Local	builds	and	unit	tests	improve	cycle	time.	The	key	is	to	make	it	
easy	to	run,	for	example	a	Makefile	target	or	simple	script	execution.	

Private	System	Build	and	Private	Workspace	are	so	closely	related	they	could	be	merged.	

	

Integration Build

Ensure	that	your	code	base	always	builds	reliably,	and	that	your	Private	Workspace	is	
consistent	with	general	expectations,	by	doing	an	Integration	Build	periodically.	

Agile,	Continuous	Integration/	Deployment	were	gaining	traction	as	ideas	at	about	the	time	
that	SCM	Patterns	book	was	published.	Those	concepts	require	a	reliable	Integration	Build.		

An	Integration	Build	is	central	to	a	CI	process.	The	variety	of	tools	that	can	support	this	--
from	Git	Hub	Actions	to	systems	like	Jenkins	--		point	to	the	importance	of	the	pattern.	

	

5	November	2023	 7	

Third Party Code Line (removed: trivial in many cases)

Manage	vendor	code	in	your	Private	Workspace	by	using	a	Third	Party	Code	Line.	

This	pattern	describes	how	to	manage	custom	changes	to	a	third-party	module.		

For	open-source	projects	(and	even	some	commercial	libraries)	in	public	GitHub	
repositories,	this	is	straightforward	to	do	by	using	mechanisms	like	forks.	

	

Task Level Commit

Simplify	the	way	you	manage	changes	to	your	Integration	Build	by	organizing	source	code	
changes	by	task-oriented	units	of	work.	

To	commit	often	with	coherent	unit	of	work	and	clear	commit	messages	depends	on	the	
development	work	in	collaboration	with	Product	and	task	planning,	and	tools	to	manage	
the	incremental	rollout	of	features	(like	feature	flags).	

	A	Task	Level	Commit	could	be	superseded	by	Task	Branch	

	

Codeline Policy

When	you	have	a	number	of	codeline	types,	create	a	Codeline	Policy	to	help	developers	decide	
what	procedures	to	follow	before	a	checkin	on	each	code	line.	

This	is	simply	“say	what	the	codeline	is	for	and	enforce	it.”	Repositories	like	GitHub	make	
this		straightforward.	

The	pattern	is	still	useful,	and	some	patterns	to	support	it	could	be	valuable.		

	

Smoke Test

Ensure	that	the	system	still	works	after	you	make	a	change	by	running	a	Smoke	Test	as	part	
of	your	Private	System	Build	or	Integration	Build.	

Smoke	Test	describes	a	basic	automated	integration	test	that	covers	basic	functionality.	A	
Smoke	Test	supplements	more	complete	testing.	

A	Smoke	Test	still	makes	sense,	but	could	be	merged	with	Integration	Test.	

	

Unit Test

A	Smoke	Test	is	broad.	A	Unit	Test	is	a	deeper	way	to	verify	that	a	module	after	a	change.	

5	November	2023	 8	

Unit	tests	are	an	essential	part	of	how	you	keep	a	code	line	active	and	agile.	Ignoring	
semantic	debates	about	what	a	“unit”	is,	key	factors	are	speed	and	isolation.	Container	
based	testing	blurs	some	of	the	lines	between	unit	and	integration	testing,	but	it’s	still	a	
unit	test	because	it	does	not	touch	other	running	systems.		

Unit	tests	are	very	relevant	to	the	pattern	language	as	they	can	help	with	refactoring	and	
the	development	of	a	Modular	Architecture,	as	Testable	Code	often	has	less	coupling.			

	

Regression Test

A	Smoke	Test	is	a	test	of	basic	functionality.	Additional	tests	like	a	Regression	Test	ensure	
that	existing	code	doesn’t	get	worse	as	you	make	other	improvements.	

Like	Smoke	Test,	a	Regression	Test	is	an	integration	test	that	gives	you	confidence	that	you	
didn’t	break	anything.		

A	Regression	Test	is	useful	but	could	be	redundant	with	Integration	and	Unit	Testing.	

	

Private Versioning (removed: implicit)

When	you	work	off	a	Mainline	you	may	want	to	explore	non-trivial	changes.	Use	Private	
Versioning	to	allow	you	to	experiment	with	complex	changes	locally,	yet	still	be	able	to	take	
advantage	of	the	features	of	a	version	control	system.	

A	DVCS	like	Git	gives	you	this	implicitly	by	letting	you	create	branches	and	versions	
without	pushing	to	the	server,	so	this	pattern	is	trivial	in	a	DVCS.	In	Git	Private	Versions	is	
essentially	the	following:	

git checkout -b task_branch # Create a task branch	
git push origin task_branch # do some and push changes for safety	
git checkout -b private_version # create a private version to explore options	
git checkout task_branch && git merge origin private_version # merge the work 	
git branch -d private_version # delete the private version branch	

With	a	centralized	VCS	like	subversion	the	process	is	more	complicated,	hence	the	value	of	
a	pattern.	

	

Release Line

When	you	have	a	Mainline	you	may	still	need	to	deploy	a	patch	to	released	software.	Maintain	
released	versions	without	interfering	with	your	current	development	by	establishing	a	
Release	Line.	

A	Release	Line	is	the	one	long	lived	branch	that	you	might	want	to	have.	This	is	where	you	
can	do	emergency	path	releases	if	you	can’t	incorporate	changes	into	a	new	release.		

5	November	2023	 9	

Release	Lines,	or	at	least	tags	are	still	useful	for	history	even	if	you	deliver	off	the	Main	Line.	

	

Release-Prep Code Line (removed: not recommended)

Stabilize	a	code	line	for	an	upcoming	release	while	also	allowing	new	work	to	continue	on	
active	code	lines	by	doing	the	stabilization	work	on	a	Release-Prep	Code	Line.	

At	the	time	of	the	book’s	writing,	daily	builds	were	a	goal	and	code	freezes	were	not	
uncommon.	Release	Prep	Code	Line	was	a	way	to	avoid	a	code	freeze	and	allow	code	to	
merge	to	the	Main	Line	as	you	stabilize	a	release	candidate.	

This	pattern	is	unnecessary	with	Continuous	Integration;	if	you	need	to	“stabilize”	your	
code	before	release,	you	need	to	improve	your	test	automation.	

	

Task Branch

To	keep	the	Main	Line	active,	isolate	potential	disruptive	changes	on	a	Task	Branch.	

Task	Branch	was	about	collaboration	on	a	subtask.	It	can	also	cover	work	by	one	person.		

A	Task	Branch	is	common	in	practice	with	an	emphasis	on	short-lived	Task	Branches.	

	

Feedback
Since	the	patterns	and	the	pattern	language	was	published,	we’ve	gotten	both	positive	and	
negative	feedback	on	its	usefulness:	

The	positive:	

• The	Pattern	Language	captured	structures	that	continue	to	be	useful	and	helped	
teams	improve	their	process.	

• The	Pattern	Language	helps	teams	which	struggle	with	complex	and	arcane	
branching	strategies;	since	it’s	not	explicitly	agile,	it	can	be	more	accessible.	

• The	SCM	Pattern	Language	puts	the	mechanics	of	branching	into	context	and	helps	
teams	to	use	branching	more	thoughtfully.	

We	also	got	feedback	that,	even	though	the	patterns	are	well	known	practices,	having	them	
in	a	book	helped	internal	change	agents	implement	process	improvements	they	were	
seeking.	This	was	both	because	the	presentation	was	useful,	and	because	having	an	
external	reference	can	(unfortunately)	add	credibility	to	an	argument	—	a	well-known	
consulting	cliche.	

The	less	positive	feedback	from	comments	and	Amazon	Reviews	suggested:	

5	November	2023	 10	

• The	Pattern	Language	is	too	abstract	and	tool	agnostic	to	be	actionable.	
• The	ideas	in	the	patterns	aren’t	novel;	“everyone	knows	them.”	
• The	format	was	distracting.	

Following	sections	discuss	the	feedback	with	a	focus	on	the	improvements.	

Novelty

At	an	early	PLoP	conference	(2000?)	Walter	Tichy,	a	key	person	in	the	development	of	
version	management	systems,	commented	that	there	was	“nothing	new”	in	SCM	patterns.	
Some	Amazon	reviews	had	a	similar	theme.	

This	issue	comes	to	the	main	point	of	patterns.	In	The	Timeless	Way	of	Building	[1]	
Christopher	Alexander,	speaking	of	the	process	of	building	says	(p	13)	

Although	the	process	is	precise	and	can	be	defined	in	exact	scientific	terms,	finally	it	
becomes	valuable,	not	so	much	because	it	shows	us	things	we	don’t	know,	but	
instead,	because	it	shows	us	what	we	know	already,	only	daren’t	admit	because	it	
seems	so	childish,	and	so	primitive.	

The	point	of	the	patterns	isn’t	novelty	but	to	make	the	approach	clear	to	those	who	aren’t	
yet	following	the	process.	And	in	the	case	of	the	SCM	Patterns,	there	are	many	teams	that	
are	not	following	the	process	even	though	it	is	likely	to	improve	their	delivery.	The	point	of	
each	pattern	isn’t	just	to	enumerate	a	set	of	good	practices,	but	rather	to	show	when	and	
how	to	apply	the	practice,	or	to	provide:	

A	solution	to	a	problem	in	a	context	

New	ideas	are	interesting,	and	useful,	but	there	are	many	cases	where	there	are	already	
solutions	that	work,	we	just	need	to	know	how	to	apply	them.	

For	example,	the	mechanics	of	a	Task	Branch	are	easy.	Branching	is	a	basic	operation	of	
SCM	tools.	The	challenges	teams	have	are	knowing:	

• How	to	reduce	the	chance	of	merge	conflicts	when	it	comes	to	merge	to	the	main	
line	(the	pattern	describes	some	rules	and	mechanics	such	as:	
– Keeping	the	branch	short.	
– Pulling	changes	from	main	periodically.	

• How	to	reduce	the	risk	that	code	will	break	the	main	line.	(Mechanisms	like	unit	
tests,	and	integration	workspaces).	

The	value	of	the	SCM	Pattern	Language	over	an	SCM	tool	primer	is	that	it	puts	the	
operation	(in	this	case	creating	a	branch)	in	the	context	of	other	SCM	operations	and	the	
development	process.	

One	could	condense	the	entire	pattern	language	to	a	very	short	sentence:	

“use	fewer	code	lines,	make	them	short,	and	test”	

but	that	would	leave	out	some	nuance	and	give	the	user	no	guidance.	

5	November	2023	 11	

An	update	to	the	pattern	language	could:	

• Frame	the	patterns	in	a	way	that	makes	the	value	of	lack	of	novelty	clearer	for	those	
who	are	not	patterns	(or	domain)	experts.	

• Set	the	patterns	in	a	wider	organizational	context.	

The	challenges	with	these	changes	are:	

• Not	spending	too	much	time	on	what	the	Pattern	Language	is	not;	focusing	on	
negatives	can	be	distracting.	

• Keeping	the	focus	narrow	enough	so	that	the	work	doesn’t	become	confusing	or	talk	
about	things	beyond	my	expertise.	Leveraging	other	patterns	and	pattern	languages	
will	be	important,	while	placing	the	patterns	in	the	SCM	Context.	

• Framing	the	patterns	as	“Best	Practices”	could	address	the	novelty	issue,	but	
patterns	are	more	than	“Best	Practices”	—	they	involve	context.	

Format

The	format	of	the	patterns	was	inspired	by	Christopher	Alexander’s	Pattern	Languages.	
Calling	out	the	context,	problem,	solution,	and	details	helped	ensure	that	the	patterns	were	
more	than	just	a	list	of	things	to	do,	re-enforcing	their	interrelatedness.	An	image	with	each	
pattern	was	meant	to	make	a	memorable	connection.	

Some	readers	unfamiliar	with	Alexander’s	pattern	form	found	the	format	superfluous	--	if	
not	distracting;	they	would	have	preferred	a	more	structured	format	with	headings	rather	
than	typographically	delineated	sections	and	thought	that	the	picture	could	be	skipped	or	
at	least	made	less	metaphorical	and	more	relevant.	Others	thought	that	the	format,	
including	the	images,	helped	enable	connections,	and	made	the	work	flow	better.	

While	the	format	helped	enforce	a	way	of	thinking,	adhering	to	each	detail	may	not	always	
make	sense.	This	is	analogous	to	the	User	Story	template:	

As	a	user	I	want	do	something	so	that	goal	

While	this	a	good	model	for	user	stories	and	other	requirements,	being	pedantic	about	the	
structure	can	make	for	awkward	reading.	The	important	part	is	having	all	the	elements.	

Making	the	pattern	language	more	approachable	while	retaining	the	context,	problem,	
solution,	elements	has	merit.		I	can	see	abandoning	images	that	are	too	metaphorical	if	
there	are	more	domain	specific	images	or	diagrams	to	use,	and	adding	some	structure	that	
make	the	language	easier	to	navigate.	

Actionability

The	pattern	format	and	the	tool-agnostic	approach	kept	the	patterns	more	universal.	The	
lack	of	tool-specific	detail,	however,	meant	that	the	patterns	weren’t	as	actionable	as	other	
resources	with	code	or	command	examples.	

While	we	considered	adding	more	detailed	examples,	the	tool	landscape	was	changing	
quickly,	and	too	many	specific	examples	might	have	made	the	book	seem	dated	more	

5	November	2023	 12	

quickly.	We	also	wanted	the	book	to	have	a	more	wholistic	focus;	the	details	of	how	to	
create	a	given	structure	might	vary	slightly	depending	on	the	details	of	your	tool	and	
situation.	We	also	didn’t	want	to	be	a	tool	reference	—	there	are	better	resources	for	that,	
and	building	on	existing	resources	is	consistent	with	the	Patterns	Way.	

The	value	of	a	software	pattern	language	is	less	the	specifics	of	how	to	implement	the	
individual	patterns	—	the	solutions	can	vary	—	but	rather	in	knowing	why	and	when	to	use	
them.	This	is	very	relevant	in	a	teaching	context,	where	people	are	learning	about	SCM	
process	and	often	tooling	at	the	same	time.	One	element	that	could	be	added	is	more	
guidance	about	how	to	encourage	adoption	of	the	patterns	in	the	face	of	resistance.	

Blog	posts	and	other	articles	helped	to	bridge	the	gap,	which	seems	appropriate	as	patterns	
are	living	documents.	However,	the	patterns	could	provide	more	implementation	guidance.	

Adoption and Impact
It’s	hard	to	know	whether	the	patterns	had	an	impact	on	the	way	teams	worked,	or	whether	
they	simply	captured	emerging	adoption.	Many	of	the	SCM	Patterns	are	reflected	in	
universal	practice,	though	again,	it’s	hard	to	say	how	much	SCM	Patterns	captured	the	
evolving	consensus	vs	having	an	influence.	

The	patterns	we	captured	seem	to	have	been	central	to	what	people	call	good	development	
process:	

• Some	of	the	patterns	are	now	built	in	to	modern	SCM	Tools.	
• The	Patterns	are	part	of	the	common	SCM	and	process	vocabulary.	
• Processes	that	use	fewer,	shorter,	branches	are	considered	valuable	in	Agile	and	

other	widely	used	development	processes.	

Since	the	SCM	patterns	span	the	software	development	lifecycle,	it	isn’t	clear	how	much	the	
SCM	Patterns	influenced	these	changes	v	capturing	trends,	v	supporting	teams	in	their	
journey.	It	probably	doesn’t	matter	as	a	Pattern	Language;	it	captured	good	practices.	

As	a	source	of	known	good	practices	SCM	Pattern	have	been	a	resource	for	those	trying	to	
improve	their	development	process	—having	an	external	resource	to	refer	to	sometimes	
adds	credibility	to	an	argument	for	a	simpler	process	—	even	when	there	is	an	internal	
expert	who	does	know	these	things.	

An	SCM	Pattern	language	is	valuable	if	it	can	help	the	following	groups	implement	
codelines	that	support	faster,	more	reliable,	delivery.	

• Developers	on	small	teams	looking	to	set	up	a	good	process.	
• Evangelists/advocates	for	better	process	in	larger	organizations	looking	for	better	

ways	to	make	their	case	for	more	agile	codelines.	

5	November	2023	 13	

Tool Integration

When	patterns	are	valuable	people	tend	to	develop	the	tools	to	make	them	easier	to	
implement,	and	in	some	cases,	take	for	granted.	In	the	case	of	Design	Patterns[7],	
programming	frameworks	and	languages	began	to	incorporate	certain	patterns,	making	
their	use	less	about	writing	code	and	more	about	selecting	the	appropriate	language	or	
framework	element.	For	example,	a	pattern	like	Singleton	is	an	integral	part	of	
adependency	injection	framework	like	Spring,	though	one	rarely	defines	Singletons	
explicitly.	Other	GoF	Patterns	are	trivial	to	code.	The	“Pattern”	still	applies	in	the	choice	to	
use	the	language	element.	

Similarly,	for	SCM	Patterns	model	tools	make	some	patterns	trivial	to	realize:	

• Private	Versioning,	being	able	to	use	SCM	mechanisms	to	do	experiments,	is	as	
simple	as	making	a	local	branch	using	a	command	like	git branch.	

• Codeline	Policy,	the	rules	that	govern	a	code	line,	can	be	implemented	by	GitHub	
actions,	or	GitHub	checks	in	addition	to	more	cumbersome	pre	and	post	commit	
hooks.	

• Repository	which	is	about	making	it	easy	to	retrieve	the	correct	version	of	
requirements	is	trivial	to	implement	given	the	prevalence	of	Package	Managers,	
Containers,	Artifact	Repositories,	etc.	

• Private	Workspace	and	Private	System	Build	are	greatly	simplified	by	module	
systems	(rpm,	go.mod,	Python	Virtual	Environments).	Containers	and	package	
managers	make	it	straightforward	to	get	the	right	version	of	tools.	The	only	
challenge	would	be	using	a	language	which	relies	on	system	(v	project	level)	library	
dependencies.	

• Task	Level	Commit	is	simplified	by	tooling	that	identifies	issue	identifiers	in	a	
commit	message,	associating	the	commit	with	a	development	task.		

What	tools	don’t	do	is	to	directly	support	the	intent	of	the	patterns.	While	tools	can	help	
enforce	a	Codeline	Policy	the	details	of	what	the	Task	Branch	policy	vary,	and	really	all	you	
can	do	in	that	case	is	inform,	though	it’s	conceivable	to	imagine	a	system	that	lets	you	
follow	a	sequence	that	lets	you:	

• Identify	a	branch	as	a	task	branch.	
• Warns	you	when	the	branch	has	been	open	for	a	longer	than	expected	time.	

As	I	discuss	in	the	section	on	future	directions,	how	to	define	the	task	is	the	harder	problem	
that	identifying	the	commit.	

Vocabulary

The	SCM	Patterns	—	like	other	patterns	—	provide	an	unambiguous	language	for	talking	
about	the	problems	space.	The	Pattern	Language	uses	term	like	Release	Line,	and	Main	Line	
that	were	in	wide	use,	and	the	pattern	language	provides	a	reference	for	how	to	use	the	
words	consistently.	

5	November	2023	 14	

In	terms	of	evolving	language,	Mainline,	used	in	the	Pattern	Language	to	denote	the	“source	
branch”	sets	a	usage	pattern	to	use	main	to	replace	Master	as	the	default	branch	name	in	git	
and	other	tools.	

Use of the Concepts

Continuous	integration	is	something	that	you’d	expect	at	some	level	on	any	project,	and	
while	continuous	deployment	might	be	less	common,	more	frequent	deployment	is	often	a	
goal.	Simpler	branching	models	that	use	fewer	code	lines	are	widely	discussed.	Examples	
include	“Trunk	Based	Development”	and	“GitHub	Flow”	both	of	which	reify	the	basic	
structure	the	pattern	language	describes.	

CI	Environments	make	it	easy	to	implement	automated	checks,	such	as	Unit	Tests	which	are	
essential	to	maintaining	a	working	main	line.	

The	themes	of	SCM	Patterns	are	widely	used,	if	not	the	patterns	themselves.	Teams	realize	
that	there	is	value	in	moving	more	quickly.	The	challenge	is	in	agreeing	on	how	much	more	
quickly	and	how.	

Extensions
The	original	pattern	language	was	focused	on	the	mechanics	of	branching	and	
development:	

• Branching	Patterns	
• Workspace	Patterns	
• Testing	Patterns	

Much	of	the	pattern	language	can	be	implemented	at	the	team	level,	but	organizational	
constraints	often	form	obstacles	to	fully	implementing	the	pattern	language:	

• Adding	the	testing	and	infrastructure	takes	time	and	much	be	planned	for.	
• Task	branches,	Task	Level	Commits,	and	Code	Review	require	some	level	of	

planning	and	prioritization.	

Changing	practices,	tool,	and	team	work	styles,	as	well	as	experience,	lead	me	to	realize	
that	an	SCM	Pattern	Language	could	benefit	from	some	additional	scope.	This	is	to:	

• More	fully	reflect	the	role	that	codelines	play	as	a	“path”	that	work	travels	from	a	
backlog	item	to	working	software.	

• Recognize	that	SCM	exists	in	and	interacts	with	the	planning	and	team	environment.	
• Acknowledge	that	“doing	the	mechanics”	isn’t	enough	to	have	a	successful	SCM	

process.	

An	updated	SCM	Pattern	Language	should	include:	

• Planning	steps	that	raise	visibility	of	smaller	deliverables	and	the	role	of	planning	in	
setting	the	release	cadence.	

5	November	2023	 15	

• Architecture	that	enables	more	incremental	delivery.	
• Organizational	and	Cultural	elements	that	allow	for	change,	including	the	

importance	of	Psychological	Safety.	

In	particular,	this	means	patterns	that	cover:	

• Human	Feedback	—	peer	feedback	in	general	and	Pull	Requests	in	particular.	
• Automated	Feedback	to	help	you	get	the	most	value	from	human	feedback	and	still	

move	quickly.	
• Architecture	Patterns	to	support	incremental	work	and	enable	testing.	
• Planning	since	the	“small	units	of	work”	that	are	central	to	SCM	Patterns	start	with	

the	Product	and	Sprint	backlog.	

Many	of	the	planning	related	items	are	addressed	in	Scrum	Patterns,	in	particular	those	in	
A	Scrum	Book[8].	

Distributed	teams	are	another	consideration	that	could	span	the	pattern	language,	since	
remote	and	hybrid	teams	are	common	and	SCM	tools	can	facilitate	collaboration.	

SCM	Patterns	put	SCM	mechanics	in	context	with	other	aspects	of	development	with	the	
goal	of	being	a	guide	to	introducing	SCM	Process	to	new	developers,	or	developers	who	
were	unfamiliar	with	the	impact	of	SCM	on	product	delivery.	

Structure of Patterns
In	addition	to	better	connecting	the	SCM	Patterns	with	the	planning	and	organization	
ecosystem,	a	revised	pattern	language	would	also	be	more	actionable:	

• Reframe	the	patterns	into	a	more	actionable	format:	Keeping	the	pattern	elements	
but	making	sure	that	they	add	value,	and	consider	simplifying	the	presentation	so	
that	format	seems	less	distracting.	

• Connect	the	SCM	Patterns	more	closely	to	the	ecosystem	(feedback,	planning,	etc)	

The	next	section	describes	some	candidate	additions	to	the	SCM	Pattern	Language	in	
capsule	form	

Some Possible New Patterns
This	section	presents	summaries	of	patterns	that	could	add	to	the	current	pattern	
language.	

	

5	November	2023	 16	

Code Review

Unit	Tests		and	similar	checks	can	verify	functionality,	but	can’t	give	guidance	as	to	design	
intent.	You	need	a	way	to	get	feedback	on	whether	the	code	does	what	it’s	supposed	to	do,	that	
the	test	tests	the	right	things,	as	well	as	an	opportunity	to	share	design	insights.	

A	Code	Review	by	a	peer	developer	can	provide	that	kind	of	feedback	if	it	can	be	done	in	a	
timely	manner.	

	

Automated Checks

A	Code	Review	is	valuable,	but	also	time	consuming.	Time	spent	on	code	review	should	focus	
on	things	that	people	do	best	and	add	the	most	value.	Certain	things	like	style,	security	risk	
analysis,	and	the	like	are	still	important.	

Add	Automated	Checks	to	your	build	pipeline	to	address	style,	formatting,	issues	with	
dependencies,	etc.	Ideally	these	checks	can	run	both	locally	and	in	a	CI	environment,	and	
these	checks	should	be	evaluated	in	the	context	of	a	Code	Review	

	

Pull Request

You	need	a	time	and	place	to	do	a	Code	Review		You	want	a	tool	that	supports	collaboration	
and	access	to	feedback	from	Automated	Checks.	

A	Pull	Request	is	a	useful	mechanism	to	identify	when	code	is	ready	for	feedback	and	
provide	tools	to	give	the	feedback,	synchronously	or	asynchronously.	Structure	Pull	
Requests	that	balance	speed	and	value,	and	avoid	the	delays	that	people	experience	with	
poorly	implemented	PR	processes.	

	

Actionable Alerting

When	working	on	a	Main	Line		you	acknowledge	that	moving	more	slowly	won’t	provide	
security	from	errors	that’s	greater	than	lost	opportunity	cost.	You	need	a	way	to	identify	
errors	that	pass	through	despite	your	best	efforts.	

Provide	Actionable	Alerting	to	running	systems	to	identify	(and	possibly	predict)	errors	or	
other	issues	worth	investigation	so	that	they	can	be	fixed	promptly.	

	

Retrospective Culture

Working	on	a	Main	Line	requires	that	you	always	inspect	how	you	work	so	that	you	can	
improve.	You	want	a	way	to	continually	review	your	process.	

5	November	2023	 17	

Retrospectives	are	a	useful	tool	for	doing	periodic	review.	A	Retrospective	Culture	goes	
beyond	the	mechanics	of	meetings	to	describe	a	mindset	of	continuous	improvement	and	
review	

	

Psychological Safety

A	Retrospective	Culture	can	only	work	if	people	can	be	honest	and	open	about	issues.	How	
can	you	make	it	possible	for	people	to	share	the	information	that	he	team	needs	to	improve?	

Creating	a	environment	that	supports	Psychological	Safety	enables	open,	blameless	dialog	

This	is	similar	to	the	Community	of	Trust	Organizational	Pattern	[9]	

	

Team Focus

A	Main	Line	works	best	when	work	gets	integrated	quickly.	Sometimes	integrating	work	
requires	collaboration	among	team	members.	How	can	you	help	a	team	move	work	forward?	

One	challenge	to	rapid	integration	to	a	Main	Line	is	mult-	tasking:	someone	needs	help,	or	a	
review,	and	can’t	get	it	because	others	are	working	on	other	items.	Start	each	development	
cycle	with	a	Team	Focus	that	gives	everyone	context,	and	sets	a	priority	on	finishing	work	
in	progress.	

This	is	closely	related	to	Sprint	Goal	(#71	in	Scrum	Patterns	[9])	

	

Product Backlog Item

Given	a	Team	Focus	how	do	you	define	what	to	do?	

The	Product	Backlog	and	the	Items	on	it	should	be	constructed	in	a	way	that	aligns	with	the	
focus	of	the	team	for	a	development	cycle.	

This	is	a	placeholder	for	Product	Backlog	Item	#55	in	Scrum	Patterns	[9]	

	

Small Development Task

How	do	you	organize	work	relating	to	a		Product	Backlog	Item?	

Each	Product	Backlog	Item	should	map	to	one	or	more	Small	Development	Tasks.	These	
tasks	should	be	completable	in	a	timely	manner	(1	day	is	typical).	Small	Dev	tasks	also	
speed	the	rest	of	the	process	(testing,	review	etc)	

This	is	similar,	if	not	identical	to	Sprint	Backlog	Item	(#73	in	Scrum	Patterns	[9])	

5	November	2023	 18	

	

Feature Flags

A	Small	Development	Task	might	not	be	ready	for	production	use.	How	do	you	allow	for	
integration	(and	testing)	without	exposing	end	users	to	partial	work	in	progress,	and	not	
holding	up	work	on	branches?	

Use	a	Feature	Flag	to	isolate	new	in	progress	functionally.	(This	pattern	talks	about	good	
practices	and	other	alternatives.)	

A	Feature	Flag	is	a	mechanism	to	turn	functionality	on	and	off	based	on	(deploy	time	or	
user)	configuration.	

	

	

Modular Architecture

Blocks	of	code	isolated	by	Feature	Flags	can	be	hard	to	manage	if	they	are	not	small..	How	can	
you	help	support	work	that	can	be	done	in	an	isolated	manner?	

A	Modular	Architecture,	minimizing	dependencies	between	components	is	valuable	for	
limiting	the	scope	of	work	related	to	a	feature.	

	

Diagram of a Revised Pattern Language

The	following	diagram	shows	an	updated	pattern	language.	Patterns	from	the	original	
Pattern	Language	are	in	italics.	Patterns	based	on	Scrum	Patterns	are	in	Yellow,	and	those	
based	on	Organization	Patterns	are	in	Orange.	

5	November	2023	 19	

	

Diagram	of	a	Revised	Pattern	Language	

SCM Patterns in a Trunk Based World
The	biggest	push	back	against	SCM	Patterns	I’ve	heard	is	in	the	context	of	arguments	of	no-
branching	trunk	based	development.	But	even	in	that	context,	the	SCM	Patterns	can	be	a	
useful	guide	in	that	the	patterns	that	support	rapid	feedback	can	support	any	number	of	
codelines.	

A	development	process	with	branching	and	pull	requests	is	often	cited	as	a	factor	that	
slows	down	delivery	because	these	steps	cause	delays	in	integration.	The	issue	isn’t	simply	
isolated	work;	every	process	has	work	being	done	at	some	level	of	isolation	of	some	
amount	of	time.	The	issue	is	time	to	merge,	and	with	that	the	circumstances	that	delay	
integration.	

The	answer	isn’t	to	never	branches	or	use	pull	requests,	but	rather	to	keep	the	reasons	for	
these	structures	in	mind	and	do	then	when	they	add	value	and	to	do	them	in	a	way	
consistent	with	good	patterns.	

Even	without	branching,	the	rest	of	the	patterns	in	the	language	support	maintaining	a	
working	mainline	(even	one	that	developers	commit	directly	to).	

5	November	2023	 20	

The	SCM	Patterns	are	still	relevant	because:	

• Teams	still	struggle	keeping	working	mainlines	that	they	can	deliver.	Even	without	
any	branching	the	patterns	provide	a	guide	to	keeping	your	single	codeline	working.	

• Distributed	and	fully	remote	teams,	and	the	reality	of	asynchronous	work,	make	the	
right	use	of	branching	more	useful.	

• The	Patterns	form	a	guide	to	(eventually)	removing	the	long	lived	branch	structures	
that	Trunk	Based	Development	and	similar	approaches	seek	to	eliminate.	

Conclusion
While	some	of	the	patterns	in	SCM	Patterns	are	either	irrelevant	or	given	current	software	
development	approaches	and	tooling	counterproductive	(as	noted	in	the	summary	of	the	
patterns),	most	of	the	core	patterns	are	still	very	valid,	and	adding	the	process	and	
architecture	context	should	make	them	more	so.	

	

5	November	2023	 21	

References
[1]	C.	Alexander,	The	timeless	way	of	building,	8th	printing.	New	York:	Oxford	Univ.	Pr,	
1979.		

[2]	B.	Appleton,	S.	Berczuk,	R.	Cabrera,	and	R.	Orenstein,	“Streamed	Lines :	Branching	
Patterns	for	Parallel	Software	Development,”	in	PLoP	conf.,	1998,	pp.	98–25.	[Online].	
Available:	https://www.bradapp.com/acme/branching/	

	[3]	S.	P.	Berczuk	and	B.	Appleton,	Software	configuration	management	patterns:	effective	
teamwork,	practical	integration.	in	The	software	patterns	series.	Boston:	Addison-Wesley,	
2003.		

[4]	S.	Berczuk,	“Reliable	Codelines,”	presented	at	the	Pattern	Languages	of	Programs	2001,	
Monticello,	IL,	Sep.	2001.	[Online].	Available:	
https://www.hillside.net/plop/plop2001/accepted_submissions/PLoP2001/sberczuk0/P
LoP2001_sberczuk0_3.pdf		

[5]	S.	Berczuk,	Appleton,	Brad,	and	R.	Cabrera,	“Getting	Ready	to	Work:	Patterns	for	a	
Developer’s	Workspace,”	presented	at	the	Pattern	Languages	of	Programs	2000,	
Monticello,	IL,	Sep.	200AD.	[Online].	Available:	
https://www.hillside.net/plop/plop2k/proceedings/Berczuk/Berczuk.pdf		

[6]	M.	Cohn,	User	stories	applied:	for	agile	software	development.	in	Addison-Wesley	
signature	series.	Boston:	Addison-Wesley,	2004.		

[7]	E.	Gamma,	Ed.,	Design	patterns:	elements	of	reusable	object-oriented	software.	in	
Addison-Wesley	professional	computing	series.	Reading,	Mass:	Addison-Wesley,	1995.		

[8]	J.	Sutherland	and	J.	O.	Coplien,	A	Scrum	book:	the	spirit	of	the	game.	in	The	pragmatic	
programmers.	Raleigh,	North	Carolina:	The	Pragmatic	Bookshelf,	2019.		

[9]	J.	O.	Coplien	and	N.	Harrison,	Organizational	patterns	of	agile	software	development.	
Upper	Saddle	River,	NJ:	Pearson	Prentice	Hall,	2005.	

[10]	Atlassian,		GitFlow	Workflow	https://www.atlassian.com/git/tutorials/comparing-
workflows/gitflow-workflow	

Related Sources
• PLoP	Papers	related	to	the	SCM	Patterns:	

– Software	Reconstruction:	Patterns	for	Reproducing	Software	Build	in	
Proceedings	of	the	1999	Pattern	Languages	of	Programming	Conference	—	
With	Ralph	Cabrera	and	Brad	Appleton	

– Reliable	Codelines	in	The	2001	Pattern	Languages	of	Programs	(PLoP)	
conference	

– Configuration	Management	Patterns	in	1996	Pattern	Languages	of	Programs	
on	July	1997	

