
1

Patterns for Agile Codelines

Steve Berczuk

steve@berczuk.com

Abstract

This paper presents a number of patterns from a Pattern Language for Agile

Codelines. This pattern language builds on the previously published Software Config-

uration Management Patterns but is a complete rewrite, focusing on creating a devel-

opment ecosystem that enables quicker, more robust deployments while gaining the

benefits of human feedback.

An Overview of the Pattern Language
Since Software Configuration Management Patterns was published in 2002, a few

things have changed:

- Distributed Version Control Systems, in particular Git, have become stan-

dard,

- Agile Development practices are more widely used

- Planning and team culture are seen as key to effective delivery.

What hasn’t changed is that teams struggle with using their codelines best to develop

in an agile context. Many teams still use byzantine branching structures that lead to

slow integration. Others advocate skipping branching altogether. This pattern lan-

2

guage shows practices to help teams use basic and simple branching patterns and

the planning, testing, and culture patterns that support them to get the most out of

their tools while becoming more agile.

This paper updates the pattern language to reflect how small—to medium-sized

(5-10 person) software teams can use a DVCS like Git in their development process.

While there is a trend towards Trunk Based Development, with minimal branching,

a guide to using branching well is useful because:

- Many acknowledge that short-lived branches are consistent with the Trunk

Based Development approach.

- The prerequisites for merging directly to a Main Line without a branch are

the same as those for using short-lived branches, so the material is relevant

in both cases

- Many teams still struggle with using branching effectively and eliminating

branching seems too risky.

This pattern language is opinionated about short-lived branches and support for dis-

tributed teams, though some of the underlying practices are relevant in other con-

texts.

This pattern language assumes some familiarity with branching and Agile software

development. Refer to the Appendix for some background material.

The Scope of the Pattern Language
Figure 1 shows the pattern language. The patterns in this paper are highlighted with a

bold border.

3

 

Figure 1: Pattern Language Overview

A Pattern Sequence

4

To give you a sense of how the Software Configuration Management Patterns work,

here is one scenario showing how you might use them to improve your delivery

process using the Pattern Names. This story covers the entire language with the pat-

terns in this paper in bold.

You realize your current integration process, which uses GitFlow, isn’t working as

well as it could. Changes take too long to get delivered, frustrating the developers

and the product owners. You want to simplify the process, making it faster, but you are

concerned about quality. Your current process is slow, but it seems to identify issues,

though some issues slip through, and you aren’t delivering the value you feel you

could.

You think that the SCM Patterns could help, so you start to change your process so

that all changes go to, and all releases come from, the Main Line. Mechanically that’s

easy; you can just change how your branching strategy. But you want more than

speed. The things that slowed down gave you an illusory sense of control; going more

slowly doesn’t always mitigate risk to the extent that you think it might and introduces

business risk, so you look to the patterns to maintain a stable Main Line.

The first step is to make it easier for developers to have confidence that what they

code and test locally will also work for others and in the production environment. Hav-

ing the ability to create a Developer Workspace that looks as much like the production

as possible, including versions of tools. 100% match may not be easy, but you can

avoid many obvious errors.

While committing from a Developer Workspace to the Main Line might be your

eventual goal, you still see some benefit from using branches, albeit differently than

you had in the past. Two kinds of branches you’ll use are a Release Line — which is

where you will keep track of the current release in case you need to deploy a fix; you

5

don’t expect to make changes to the code in the Release Line , but it’s there in cases

your in a spot where delivery from the Main Line won’t be timely enough. You will use

a short-lived Task Branch each of which will be used to work on a Small Development

Task. Your goal is to have all development work integrated daily or better.

To keep the team on the same page about the rules for using branches, you docu-

ment a Codeline Policy and add some simple enforcement mechanisms in the SCM

system.

For each Small Development Task, developers write Unit Tests to provide a goal

(for new tests) and confirm that your change isn’t breaking anything else. Unit Tests,

while valuable, make assumptions about interfaces. To provide a sanity check that the

contract the units tests assume didn’t break, the team also writes some lightweight In-

tegration Tests.

Small Development Tasks mean that you will be committing consistent units of

work, but the work will not implement a complete feature. In some cases, that work

won’t be visible, but in others, it may be. To avoid unexpected behavior, you can use

Feature Flags to hide work in progress in certain environments. A Modular Architec-

ture makes feature flags easier to implement.

When a Small Development Task is complete and the Task Branch Is ready to

merge developers as for a Code Review, leveraging your Pull Request process to al-

low for knowledge sharing, feedback about design and implementation. Feature Part-

ners ensure that someone can promptly give good feedback, and a Team Focus

around completing a Product Backlog Item helps to ensure that the team prioritizes re-

views.

In the past the team seemed to spend a lot of effort commenting on style and for-

matting issues rather than design and requirements. Automated Checks identify these

6

kinds of issues, not to and confirm that all the automated tests pass. These automated

checks can run as part of an Integration Build .

You realize that when you move fast things will break. And that’s OK since no one

is perfect and most failures will be related to things you haven’t anticipated. You want

to encourage an inspect and adapt mindset, and avoid a culture of blame; you do

what you can to create a Retrospective Culture. A Retrospective Culture means having

retrospectives, but also incorporating the values of retrospectives into daily work.

At each step of the process change, as your implementation of the patterns im-

proved, your delivery speed improved, and the quality didn’t seem to suffer; any mis-

takes that happened were small and no worse than(and often less severe) the errors

that survived the old process. There is still more to do; eventually, you can further

streamline your process. You realize that, while there were technical changes to be

made, what held you back before was not giving enough credit to how planning and

design interacted with technical practices. Improving one can help, but working

through the pipeline gave you some big wins

Main Line
When you use an agile software development process like Scrum, you plan iteratively.

You want your codeline process to support your agile delivery model. This pattern de-

scribes the high-level structure — a Main Line — that makes it easier to deploy code

quickly to reveal business value while maintaining stability and traceability by provid-

ing a central integration point for code.

7

 
Forces for Main Line

Challenges of Balancing Speed and Stability

Agile software development is based on frequent iteration and feedback as measured

by inspecting working software. But stability and speed can appear to be at odds.

Some teams try to reduce the risk of error by slow, disciplined steps when integrating

work into a delivery code line. These teams may have:

- More manual testing

- More peer reviews

- Intricate integration testing

- Strict approval gates to prevent ‘accidental’ integration

- One or more staging branches

The team integrates into a single shared code line only once it is “certain” that the

code works. For example, in a GitFlow model, work in progress is integrated into a

“Develop” branch, which is considered a working branch. The changes are merged to

the shared mainline only after they have been approved for release.

8

 

There are variations, all of which work on the belief that isolation and moving slowly is

safer. Keeping work on isolated branches preserves the stability of the eventual target

branch in the short term but defers the problem: the target branch receives changes

slowly, leading to process and business risk:

- Process risk: The longer work stays isolated, the greater the risk of merge

conflicts and divergent design decisions, as well as more work-streams to

maintain.

- Business risk: Slower code delivery means that features take longer to be

released, which can lead to opportunity costs and longer feedback cycles

based on larger features.

Since agile software development is about adapting to uncertainty in the project

space, it is valuable to evaluate the current state of the code sooner.

Moving slowly can lead to a self-fulfilling dynamic:

- A slow integration process leads to a temptation to integrate larger, more

complex units of work.

- The longer you keep your changes isolated, the harder the integration will

be, both for your work and work started after your work stream started.

9

- The more overhead for a merge, such as more testing due to change set

size, the greater the temptation to introduce more work before you merge.

 

Faster integration means you could miss an error, but slow integration doesn't guaran-

tee perfect software. Regardless of the size of the unit of work or how quickly you inte-

grate it, merging code that breaks the shared integration codeline will slow down the

entire team.

Frequent integration is more productive: the more frequently you integrate, the

simpler each integration will be because the change is smaller and the work started

with more recent code.

Create a Stable Baseline

Therefore:

 Work on a Main Line, where all work is integrated. Use mechanisms to allow

work to be integrated frequently while maintaining stability so that the Main

Line is potentially deployable.

10

 

A Main Line is a code line that:

- contains the “record” of the latest work

- tracks the current state of working code and is the starting point for any

new work

- is the source of all releases (with the rare exception of emergency patch re-

leases).

The Main Line is never deleted. It lives throughout the entire project, and the entire

team contributes to it.

Work in progress, before it is merged to the Main Line could be:

- on another branch (as this pattern language describes) or

- In a developer workspace with no independent tracking branch.

In either case, the prerequisites are the same. This pattern language describes how to

use short-lived branches, which is consistent with what Accelerate describes:

Following our principle of working in small batches and building quality in,

high- performing teams keep branches short-lived (less than one day’s work)

and integrate them into trunk/master frequently.

The goal of Agile Software development is to manage uncertainty. As Mike Cohn

wrote in Agile Estimation and Planning:

11

The best way of dealing with uncertainty is to iterate. To reduce uncertainty

about what the product should be, work in short iterations, and show (or, ideal-

ly, give) working software to users every few weeks…

Being biased toward quicker integration into a shared Main Line, rather than reducing

error, can help you manage uncertainty by showing you an accurate current state. Er-

rors will still happen; being able to recover when they do is more valuable than slow-

ing down in an attempt to avoid them all. As Gary Klein writes in Seeing What Others

Don’t:

“When we put too much energy into eliminating mistakes, we’re less likely to

gain insights. Having insights is a different matter from preventing mistakes.”

A goal of an agile project is to gain insights into the state of the software by frequently

inspecting the latest code in a running application.

Example

A Main Line development flow will look like the following, though each team can de-

cide what the correct length of time is:

1. Checkout the HEAD of the Main Line into a development workspace

2. Code, backed by a Task Branch

3. Within a day, merge the code after an appropriate feedback process.

12

Cautions

Maintaining an active, healthy, Main Line takes discipline. An occasional error is in-

evitable, so while you might feel comfortable eliminating intermediate branches and

getting code to the Main Line quickly, you may be tempted to add extra gates be-

tween “merged to main” and “released.” While this might be a reasonable starting

place, you want to work to get to a point where the merge to the Main Line is quick,

automated and gives you high confidence.

Next Steps

While the Main Line model’s simplicity, with fewer codelines, has advantages, you

need some mechanisms to allow frequent integration to happen safely and reliably.

You can’t avoid all errors, but you can avoid major ones and reduce the impact of any

that slip through.

To help ensure a healthy Main Line you need to:

- Define the rules for integrating to the Main Line and when to use other

codelines: Codeline Policy.

- Provide a place to reliably do development with the correct dependencies

and tools: Developer Workspace

- Allow for delivery of critical fixes to released code: Release Line

- Enable Parallel, Independent Work that can be integrated into the Main

Line quickly and reliably: Task Branch

- Get feedback on work before it’s integrated into the Main Line: Code Re-

view

- Build and Test automatically: Integration Build

- Get Feedback on design and implementation: Pull Request

13

- Create a Retrospective Culture that is robust in the face of the inevitability

that things will break despite best efforts and has a continuous improve-

ment mindset.

Task Branch
You need place work that facilitates the use of feedback mechanisms such as testing

and Code Review to help you merge with confidence so that you can have consistent-

ly working code on the Main Line. This pattern describes a codeline structure that en-

ables your team to work in parallel to deliver multiple changes to the Main Line quick-

ly while preserving the integrity of the Main Line and maintaining focus.

 

Balancing Isolation and Collaboration

A typical development workflow includes the following steps:

- Pulling the current state of the code from the Main Line.

- Making changes to the code.

- Getting feedback on the change from team members and/or tools

14

- Merging the work into the Main Line.

It’s typical to code and test in your private workspace before sharing your changes

with the rest of the team. Unless you work in a communal workspace (which would be

challenging), there is always a period of time when your changes are isolated from the

Main Line. While this means that your work isn’t always up to date, having no isolation

can become chaotic as the number of contributors increases.

A workspace, with or without a local branch, is a parallel work stream, much like a

shared branch, but without the transparency and automation support branching en-

ables.

 

There are a few options for managing this isolated work stream. Each option differs in:

- How visible it is to other team members

- The ability to use the mechanisms of your version management system to

have more freedom to experiment.

- How much you can leverage your shared CI workflow.

A good solution will allow you to work in a way that yields the benefits of (brief) isola-

tion while minimizing the time until the code is merged into the Main Line.

15

Some of the ways you can manage the code in your workspace before integrating

with the Main Line are:

- Push directly to the Main Line from your workspace.

- Create a branch locally that you don’t push, and push the result to the Main

Line

- Create a branch for your work and push it to the shared repository. When

complete, merge this branch to the Main Line (directly or via a Pull Re-

quest).

A good solution will allow you to work in a way that yields the benefits of (brief) isola-

tion while minimizing the time until the code is merged into the Main Line.

A workspace without a backing branch is straightforward to manage because it re-

quires fewer interactions with the SCM tool. However, you cannot easily track steps

during the coding process. Some of the disadvantages of this approach are:

- Limited ability to get feedback using the tools available in a Continuous In-

tegration Environment before you merge

- Making it more complicated to get input from team members who are not

co-located (temporally or geographically) because your work-in-progress

code is invisible to other team members

- An increased possibility of losing work in progress due to the lack of ver-

sion and tooling support in a shared repository

A workspace with a local branch lets you track changes locally and experiment easily

(see the Private Versions Pattern from SCM Patterns). However, this approach has the

16

same issues relating to lack of transparency and tooling support workspace-only ap-

proach.

Using a branch, you can collaborate on a feature with other developers and get

the advantage of quickly testing the code in the branch in a Continuous Integration

Environment, opening up more potential for automation, information sharing, and col-

laboration without the right expectations. However, working on a branch can encour-

age slower, asynchronous interactions.

Using branches can cause problems when teams encourage working on a long-

lived branch—such as a Feature Branch—until work is complete. While this seems to of-

fer some superficial advantages, especially if the work is isolated from the rest of the

code base, the cost of a longer gap between integration easily outweighs any poten-

tial advantage. The longer the delay, the higher the risk of merge conflicts and errors.

 

You want to enable collaboration and reliable testing while also working to minimize

the length of time between starting work and merging, which includes:

- Time between work starting and code being completed.

- This depends on the developer’s skill and speed, and the task size

- Time between work being complete and merging

- This depends on the dynamics of the feedback cycle

17

Branch for Tasks, Merging Quickly

Therefore:

For each development task, work off a Task Branch. A Task Branch represents a

small coherent unit of work that can be done reasonably quickly. Merge into the

Main Line as quickly as possible

 
Basic Task Branch

A Task Branch starts from the Mainline. The branch ends when the task is merged.

A Task Branch enables a developer to:

- Have a backing store for work in a workspace related to a Small Develop-

ment Task.

- Maintain flow.

- Experiment

- Obtain Feedback

Using short-lived Task Branches is consistent with rapid integration to a Main Line. In

Accelerate the authors say:

ulysses://x-callback-url/open?id=ZXgk_Pcl7rXvpbpiAUM2Ow

18

Following our principle of working in small batches and building quality in,

high- performing teams keep branches short-lived (less than one day’s work)

and integrate them into trunk/master frequently.

A “Task”, which is described in more detail in Small Development Task can be a User

Story or an intermediate step for a user story. The main attribute is that it is a small, co-

herent unit of work. Small can vary by team, but a typical goal is to be able to integrate

at least daily.

Example

A Task Branch follows a familiar workflow:

1. Check out the Main Line

2. Create a Task Branch

3. Make code changes, including tests. This can include multiple commits

4. Push changes to the shared repository periodically.

5. Get feedback.

6. Merge the completed work.

7. Delete the Task Branch

The goal is to integrate the work into the Main Linequickly.

Cautions

Don’t confuse a Task Branch with a Feature Branch. A Task Branch is shorter and allows

for incremental work. A Feature Branch often represents a larger unit of work that sur-

vives until the “feature” is complete, at which point the code merges to the main line.

19

Feature branching is rarely a useful pattern to follow; use Task Branches for any work

in progress.

Be mindful of:

- Merge Conflicts: To minimize the risk of merge conflicts causing delays at

the end, pull from the Main Line periodically to simplify later merges and

identify possible design divergence early.

- Task Branches that last a long time. Gather data (either metrics or heuristics)

to identify when Task Branches take a long time to merge. Discuss these at

Retrospective to evaluate if the long branches were problematic and, if so,

how to fix the underlying issues.

- Overly restrictive Codeline Policies for the mainline that require a slow

Code Review process.

Using a Task Branch can make these problems more obvious (since the SCM tooling

makes the parallel work stream visible), but that doesn’t mean that the branching poli-

cy is the cause of the problem. These issues can also manifest when doing a no-

branch directly from the workspace workflow. The causes of long integration times are

often related to problems external to the code line flow, such as planning and prioriti-

zation.

Aside: Branch Reuse

One approach to balancing the overhead of branch creation with frequent integration

is to create one branch for a larger task, but merge multiple times during the branch’s

lifetime. If your policy if to delete the (remote) branch after a merge, this is conceptu-

ally the same as multiple task branches. The team should decided if there is any value

20

to creating uniquely named branches for each merge. In many cases, the “multiple

merges” approach can work fine if the team finds it easier.

Next Steps

To integrate a task branch quickly while minimizing the risk of errors, you need to:

- Ensure that tasks are the right size to complete quickly and well-defined

enough to know when they are done. Identify Small Development Tasks that

support completing work quickly.

- Have a Code Review process to support shared understanding and identify

likely errors.

- Use an Integration Build in a CI environment to ensure that a consistent set

of checks is run on the code.

Code Review
When you are developing on Task Branch, quickly moving work to the Main Line, you

want to ensure quality and consistency since changes affect the entire team. Tests and

other automation help and feedback from other developers on approach, style, de-

sign, and testing approach can provide useful insights. This pattern describes a way to

get prompt and useful feedback from team members before you integrate changes

into the Main Line.

21

 

Balancing Feedback, Learning, Speed, and Quality

Before work related to a development task in a development workspace is ready to

merge into the Main Line, the developer wants to have confidence that the code is:

- complete, robust, and free from errors: does what it’s supposed to do and

handles the range of inputs appropriately

- maintainable: won’t add undue burdens or unreasonable tech debt to the

code base,

- safe to merge: won’t break other parts of the code

Some of these criteria can be addressed by automated testing and static analysis

tools, but:

- Static analysis tools can provide insight into some maintainability issues,

but they can sometimes be narrow in scope and not cover the entire prod-

uct development context.

- The results of tests are only as good as the quality of the tests. In particular,

when new code with tests is added, you want to be sure that the tests are

appropriate for the task’s goals.

22

You can ask another developer to review the code before it’s merged as a person can

provide perspectives that tools can’t, but a review by another developer adds a hand-

off step to the process, and handoffs can introduce delays that can significantly slow

down integration into the Main Line.

Another option is to use a “fail fast” approach, where a developer merges code to

the main line when they think it is ready, and the team places mechanisms in place to

recover from errors. Having reliable rollback mechanisms is an attribute of a robust

development process, and this will help improve the speed of integration but:

- Issues detected after code is merged can slow down the whole team

- While “hard failures” would be easy to detect, more subtle design issues

might linger until well after the time they were introduced, making them

harder to understand (and fix)

Feedback can sometimes be viewed as judgmental and critical rather than a collabo-

rative attempt to improve code quality. You want to ensure that the feedback can fo-

cus on significant issues rather than minutia or matters of opinion.

Quick feedback is better but feedback that is too cursory or not useful enough has

little value. Spending more time giving can lead to a point of diminishing returns, re-

ducing the impact of the feedback that you can get from deployed code.

You want to get the benefits of collaboration with your team to improve overall

code quality while leveraging tools and automation and not injecting long delays into

the integration process.

Relevant, Timely, and Actionable Feedback

Therefore:

23

 Before merging code from a Task Branch into the Main Line get feedback

from another developer. Identify practices that ensure that the feedback is time-

ly and that the reviewer has the appropriate context. Leverage automation

where possible to focus on human time. Acknowledge the cost-benefit for some

trivial changes where cursory reviews might be sufficient.

 

Good Code Reviews are a form of collaboration that can:

- Reduce error

- Helps the code improve.

- Lead to a shared understanding of the code base.

Feedback that achieves these goals is:

- Relevant: Not just general comments about coding style but comments that

take design conversations and the goal of the work into account.

- Timely: Feedback is shared shortly after the code is ready for review, and

questions are answered promptly.

- Actionable: Feedback gives enough information to allow the developer to

act on it.

Relevant feedback addresses the code’s context, including requirements, design dis-

cussions, etc. General programming feedback about style and related issues is useful,

24

but Automated Checks are often better for that feedback. The more context the re-

viewer has about the problem, the solution, and the design, the easier it is to be rele-

vant.

Timely feedback is sufficiently prompt so that the developer does not lose context

because of time spent waiting. Timeliness does not mean “immediate,” though sooner

is often better. The definition of “timeliness” should be part of a team’s working agree-

ments.

Actionable feedback is as specific as possible and suggests specific actions to

take or questions to discuss. Vague comments about concerns or errors slow down

the process.

Ideally, reviewers should be participating team members. Avoid:

- Limiting reviews to senior people (or requiring certain reviewers). You want

the reviewers to know the code and the problem, and initially, that might be

the more experienced people, but the choice is about skill and knowledge,

not status.

- Soliciting feedback from individuals who are not on the team. The team can

prioritize features and reviews. Those outside the team might not be willing

or able to, so tying integration to the schedule of someone outside the

team can be problematic.

A designated reviewer model and external feedback can slow down the process due

to scheduling bottlenecks and less contextually informed comments.

Code Review feedback can be delivered either interactively or asynchronously. In-

teractive feedback, where code is discussed in real-time, can take any number of

forms:

25

- Pair Programming

- Desk Review with a Feature Partner.

- An interactive review after sharing a Pull Request

Synchronous feedback doesn’t preclude some preliminary review and comment;

much like preparing for a meeting, taking a few minutes to review code “offline” can

make for a better review, as long as this internal is short.

Asynchronous Feedback is often associated with a Pull Request Process, though it

can occur in other ways too. Asynchronous feedback can make sense for:

- Larger changes

- Trivial Changes, where feedback with comments is likely to be sufficient

- Distributed teams, where there is a working agreement setting out expecta-

tions and commitments about timeliness.

Even when feedback is asynchronous, it’s essential that it be prompt and that conver-

sations (as opposed to self-contained comments) move quickly to an interactive fo-

rum.

Remember:

- The goal is to improve the work. Yes, you want to identify problems, but you

also want to suggest solutions.

- The participants are all creators; if you give feedback now, you may get

feedback later. As a reviewer, consider how useful you might find a com-

ment or request.

- To the extent that the code fulfills the requirements and meets team norms,

and general design and implementation guidelines, trust the author of the

code to make decisions about how to apply comments.

26

- A code review is not the time to impose personal preferences on the code,

though it could be a time to identify gaps in guidelines. If you were not part

of the design process for the code, acknowledge that you might be uncer-

tain about some element of requirements or design,

If your process requires “approval” before merging and feedback is asynchronous, err

on the side of permissive approval (“approved pending these changes”, for example).

Permissive approval avoids delays and demonstrates trust in team members.

Example

After a development task is done, a developer posts a message to the team Slack

channel asking for feedback and indicating the location of the change. (The mecha-

nism could be a Pull Request, or a Task Branch or simply a request to meet, though it’s

often useful to give people a short amount of time to read the code before gathering).

Team members offer feedback, and the developer makes appropriate changes

and then merges the code.

Other Forums

Narrowing the scope of code review is an essential part of meeting the time to inte-

gration goals. Some goals are better achieved in other forums:

- Learning and knowledge sharing can happen in other feedback sessions or

even “code workshops”

- Giving a new developer closer feedback as part of training could be done

in an “out of band” review session by a manager or a mentor. This pattern is

27

about Code Review as part of the deployment pipeline. You can ask for re-

views at any time.

Review Effort (and Skipping Review)

Not all code needs the same level of review; consider the risk of a change. Some

changes you can identify as low risk (either via a tool or heuristic) might not need a

peer review — passing automated tests and checks can be sufficient.

Metrics

If you feel like your code review process is bogging down, there are some metrics to

track to help you identify bottlenecks:

- Time to first comment:

- If the wait for a review frequently exceeds the team’s working

agreement, work to identify the issue. It could be over-commit-

ment, or perhaps the expectation is unreasonable

- Time between interactions (if you do asynchronous reviews):

- Asynchronous reviews can be useful for simple direct comments

but don’t work well for conversations. If the team feels that it takes

too long to have a feedback conversation, consider defaulting to

synchronous reviews.

- Time from Code Completion to Merge: This is the key metric for an agile

codeline. If Code Review becomes the bottleneck in integration, under-

stand why,

28

Using a Pull Request mechanism makes it easier to collect this data, though it is still

relevant for any feedback process.

Cautions

If the team loses track of the purpose of Code Review—collaboration—it can easily be-

come a bureaucratic, low-value process.

In particular, avoid the following traps:

- Treating code reviews as “evaluations.” The goal is to improve the code. If a

pattern emerges that leads to the thought that someone needs coaching,

address that in another context, ideally with an “elevate the person’s skills”

frame.

- Having reviews require explicit approval gates. If you have a team dynamic

where someone will blithely ignore show-stopper issues, this points to larg-

er team dynamics issues. If you must have gates, make them part of your

automated tests.

While speed is important, do not skip steps in favor of speed. If the feedback cycle is

taking too long, work to improve the process.

When gathering metrics, use them for understanding rather than evaluation. If the

metrics look bad, the reasons might be out of individuals’ control yet easy to fix.

Next Steps

- Facilitate relevant (and timely) feedback by ensuring a Team Focus so that

Team members can feel comfortable prioritizing reviews and finishing work

29

in progress over any individual goals. Avoid emphasizing individual tasks

over larger goals.

- Use Automated Checks to catch mechanical issues with the code so that

team members can focus on design and purpose.

- Make sure there is a reviewer with good context, such as a Feature Partner

who understands the product scope and technical design.

- Enable automation and support remote team members using a Pull Re-

quest.

- Smaller tasks are easier to give good, prompt feedback on. Enable timely

feedback with Small Development Tasks

Pull Request/Merge Request
You want a transparent mechanism for Code Reviews that facilitates Automated

Checks, for a distributed team. This pattern describes an approach to facilitate code

reviews that offer timely, relevant, and actionable feedback in a shared space, poten-

tially including people who aren’t in the same room or can’t meet at the same time.

 

30

The Challenges of Remote Collaboration

When a change is ready for integration, you may want a Code Review from a team

member. This should happen quickly to avoid delaying integration. A good Code Re-

view process balances:

- Speed: Timely feedback so as not to slow down integration more than nec-

essary,

- Quality of feedback: Relevant and actionable comments to improve the

code.

- Flow: To minimize the cost of delays for the author, and context switches for

the reviewer.

The easiest way to get feedback is to ask someone nearby to look at your code or per-

haps to invite someone who is available to view the code by screen sharing. The most

available person may not be the person who can give the best feedback, and the per-

son who can give the best feedback may not be the most available.

Allowing for asynchronous feedback can address the availability issue; asking

someone to review and comment “as soon as they can” can allow for a productive

context switch, assuming that the delay isn’t too long. Having time to prepare and

comment thoughtfully can also improve quality, but handoffs and delays in conversa-

tion can negatively affect collaboration and productivity, You’d like to be able to get

informed feedback ‘quickly enough’ without negatively impacting others on the team.

Scheduling times for review can minimize the cost of feedback as Slow Productivi-

ty suggests:

“A direct strategy for reducing collaboration overhead is to replace asyn-

chronous communication with real-time conversations. ... Arranging these con-

31

versations, however, is tricky. There’s a reason why the saying this meeting

could have been an email has entrenched itself as a workplace meme in recent

years. If every task generates its own meeting, you’ll end up trading a crowded

inbox for a calendar crowded with meetings—a fate that is arguably just as

dire. ... The right balance can be found in using office hours: regularly sched-

uled sessions for quick discussions that can be used to resolve many different

issues.”

While scheduled collaboration is a common pattern in agile methods (the Daily

Scrum, the Sprint Review, etc), tasks get done at unpredictable times. So having one

defined review time might be too few, but too many can lead to feeling of having a

lack of solid focus time.

If you offer reviews a time to prepare for feedback, one option is to have each per-

son download the branch locally, build it, and review it, which adds complexity to the

process and limits collaboration possibilities.

An alternative, using a centralized mechanism like GitHub, which allows for brows-

ing and comments, can simplify the browsing workflow, but the ability to comment

can lead to batched, asynchronous review work.

For remote or distributed teams, mechanisms that depend on real-time, syn-

chronous collaboration can be challenging.

The Automated Checks that a Continuous Integration Build offers can provide im-

portant insights into the state of the code and allow humans to focus on higher-level

issues. You can do a risk analysis of the code based on certain heuristics (or at the

judgment of the developer) to skip a review for trivial changes, as long as the Auto-

mated Checks pass. Having a way to ensure that these checks run before the human

review starts is valuable: A consistent process to run Automated Checks and Unit Tests

32

in ant integration environment which can incorporate that feedback into the review

provides a backstop for inadvertent errors, and provide an opportunity to catch errors

before the code is merged.

Some regulated industries require some documentation of reviews, and you want

to minimize the overhead of that documentation process. Unrelated to any compli-

ance requirements, having data about the review process (timing, changes, etc.) might

be useful for tuning the process and identifying process issues that you can address in

a Retrospective.

You want to balance the speed, quality, and relevance of feedback.

Leverage Tools in an Adaptive Way

Therefore:

 Establish a Pull Request Process that encourages collaboration and rapid

feedback. Favor interactive reviews in a time frame that works for the team but

allows for asynchrony when it reduces communication overhead without hurting

communication. By default, avoid blocking Pull Requests for all but the most sig-

nificant changes; trust team members to address issues or to reach out for clarifi-

cation.

A Pull Request is a form Code Review done in a shared environment. This en-

ables:

- Easier collaboration across locations.

- Automated checks to be run, with feedback shared in a common place.

- A place for team members to share feedback and propose specific

changes.

33

The essential elements of a Pull Request are:

- A way to announce that code is “ready to merge into the Main Line.”

- A way to request feedback in the form of comments or proposed changes

- A way to respond to feedback through comments or code changes.

- A was for automated builds, and checks can run on the code before a

change is integrated.

The following things are not essential elements of a Pull Request:

- Integration gated by approval: While approval can be part of the process, a

sense of shared responsibility makes for a better delivery pipeline.

- Asynchronous comment threads: Asynchrony can be useful when there is a

Time Zone difference between teams (for example, sharing end-of-day

work for another team’s feedback might be useful), but the goal should be

to integrate as quickly as possible.

While Pull Requests can be asynchronous, the comment process need not be; feed-

back can be collaborative, asynchronous, or a combination, depending on the team’s

agreements. Pull Requests can be challenging when they introduce unnecessary de-

lays. But not all delay is problematic, and some can be valuable. Consider the life of a

pull request:

1. A Pull Request is opened

2. Automated checks are run

3. Team members review the code

4. Review conversation happens

5. Author makes code changes

34

6. Code is merged

Insert diagram pr-stream

The “review conversation” can happen:

- Immediately when complete: this optimizes for feedback speed but doesn’t

allow for reflection or context switching.

- Scheduled review times: Much like the Daily Scrum is a way for a Scrum

team to have a focused time to discuss how to collaborate, having an

agreement about when reviews happen can reduce interruptions.

- Scheduled delay after code is complete. This is often an good balance be-

tween immediate and strictly scheduled, as it gives team members a

chance to transition from other work.

Even with scheduled times, the team can always agree to exceptions when needed

and fall back to immediate review,

The choice of approach depends on the team context. If a team is highly focused,

“immediate” could work. “Scheduled delay” (“in 30 mins”) or even “every hour”) could

be a challenge if team members find their time consumed with meetings outside the

team, in which case reserving a block of time for everyone to do reviews might be the

best choice, though excessive batching can introduce waste. A few times a day or

“every two hours” can be a reasonable compromise.

Sometimes, you can combine the “Review code” and “Review conversation” steps.

You want to have a pull request process that minimizes the length of the “review con-

versation.” To do this:

35

- Avoid asynchronous comments threads. “Pre-review” comments are useful

to give the team a chance to understand the code, but avoid long asyn-

chronous dialogs:

- If comments are minimal and clear, trust the author to address com-

ments

- If discussion is needed, arrange for an interactive discussion time.

- Don’t require a second round of reviews. After any discussion, trust the au-

thor to address comments appropriately.

A Pull Request can be a framework for interactive feedback that balances the value of

interactivity and flow.

A Pull Request will be effective with certain practices in place:

- Working agreements about collaboration:

- How quickly review should happen

- Times when people will be available for collaborative reviews.

- Interactive Reviews:

- After an initial review period, review changes together, ending with

an action plan of what changes the developer will make before

merging.

- Conditional Approvals for asynchronous comments.

- When comments happen asynchronously, trust that the developer

will address the concerns or reach out for clarification. Save “Re-

quest Changes” for significant errors. And ask to meet.

- Limit the use of gates to things like:

- Failed Tests

36

- Failed Automated Checks that are known to indicate high-severity

issues,

- Keeping the change sets small to minimize the other factors that slow down

Code Review.

The overarching criteria is whether the Pull Requests makes it difficult for the team to

meet its integration goal. If merging code “within a day” is the goal, this probably

means a feedback cycle of approximately 2 hours.

Example

Insert Flow Chart PR-Flow

Pull Requests are often associated with heavyweight processes involving gates

and approvals. This isn’t necessary, but you can leverage the Pull Request Too to im-

prove the quality of collaboration. Consider this flow:

- The developer pushes their changes to the central repository and opens a

Pull Request

- The build pipeline runs a series of automated checks, including tests, style,

and security checks. The style and security checks add annotations to the

build. When the checks are complete, the build pipeline notifies the other

team members that the code is available for feedback and suggests the

team meet in 45 minutes.

- Team members review the code and make comments.

- If there are no substantial items to discuss:

- The team members approve the Pull Request, and the meeting

doesn’t happen.

37

- Code is merged by the author after they review and address any

feedback

- If there are items to discuss:

- The team meets at the appointed time and discusses comments.

- After the meeting the team approves the change

- After the author addresses comments in the way that makes the

most sense, they merge the change.

Cautions

Since Code Review in general, and Pull Requests in particular, are part of your collabo-

ration dynamic, it’s important to periodically check in on whether:

- The team is meeting its commitments to each other

- If the commitments are still valid

If you feel that a Pull Request processes take too long. Consider gathering metrics,

such as “time from open to close”, “time to first feedback,” and potentially “number of

comments” to add some data to present at a retrospective. Also consider impressions,

since a mismatch between data and feeling could indicate that the guidelines might

need to be revisited.

All the criteria that make for a good Code Review will help you to avoid the major

issue with Pull Requests, in particular ones that seem to drag out.

- A major problem with Pull Requests is a lag in starting (and finishing) re-

views. This can be due to reviews not being a priority. Having the right

Team Focus can mitigate this

38

- Feature Partners can help ensure that the reviews focus on the right things

and are quick, and that reviewers have the correct context.

- Automated Checks enable the humans on the process to higher level is-

sues, leading syntax, static analysis, etc tools to catch the things they are

best at.

- Small Development Tasks can ensure that the code being reviewed is an

appropriate size to be reviewed quickly and that the code can be merged

independent of other changes (atomicity).

Some of the features of a Pull Request that make sense in the context of open source

projects, such as required approvals and gating reviews can slow down a team unnec-

essarily, and lead to downstream costs. You don’t need to enable all of the gating fea-

tures of a Pull Request if they don’t add value to your workflow.

While getting feedback is often helpful, and synchronous conversations can miti-

gate many risks related to delays, keep the review process aligned with risk level, and

be wary of falling into a habit of synchronous feedback. Some changes might not

need a formal review, and sometimes, asynchronous feedback makes sense. Howev-

er , long comment exchanges can be a sign of deeper collaboration issues. Continual-

ly evaluate the process.

Notes

Consider making PR gates contingent on risk, perhaps using a tool like Shepherdly ,

which can assign a risk score to a change

The origins of the term PR in the context of Open Source are important to under-

stand (and that the same toolchain is used in product and project settings, though

with a different workflow.

https://www.shepherdly.io/

39

Feature Partner
When Code Review is part of your development process you want to make it easier for

developers to get timely and relevant feedback on their code changes. This pattern

describes a structure you can apply to your team to ensure that your code gets re-

viewed by someone with enough context .

 

Tasks and Assignments

In some teams, coding is primarily done by individuals. The timely, relevant, and ac-

tionable feedback that makes for a useful code review requires context, in particular

team members who:

- Are available to give feedback close to the time the change is done

- Have the context of the code to understand the requirements and design

decisions.

- Know the tech stack and the code base well enough to give reasonable

feedback.

Another value of Code Reviewis knowledge sharing, but a pre-merge core review is

not the time for revisiting the details of every decision.

40

In the interest of getting prompt feedback, you might consider asking the team at

large for comments but:

- Not all team members will have the requirements and design context and

thus may only be able to provide superficial feedback.

- Any individual might not prioritize giving feedback due to other commit-

ments or because of a belief that someone else will get to it,

You might consider having a designated reviewer — a manager or someone with archi-

tectural oversight and a broad understanding of the project — review all changes. Hav-

ing a senior person review all the code seems like it might be a good way to mitigate

the risk related to lack of context and ensure uniformity of reviews, but a designated-

reviewer approach:

- might become a bottleneck either for reviews or for design discussions.

- might not know the rationales for some decisions that were discussed at

length, and revisiting non-critical issues during a review is frustrating at best

and time-wasting at worst.

- creates a dynamic that removes some ownership from the development

team.

Pair Programming might provide an opportunity to have a reviewer with all the con-

text, but:

- Not all teams do pair programming well

- Since a pair is co-creating code, some changes might benefit from the per-

spective of a non-author.

41

Having someone familiar with the context, but not too close to the implementation

available for feedback can lead to valuable insights, as Adam Alter says in Anatomy of

a Breakthrough:

The more you consult with nonredundant outsiders, the more diverse your in-

puts, and the more likely you are to move beyond stubborn personal defaults.

Ideally, you want feedback to be actionable and about improving the code, so it’s of-

ten better to have someone with a day-to-day implementation role give input.

Designated Partner and Shared Responsibility

Therefore:

 Start each set of development tasks by ensuring that at least two people are

committed to delivering a feature. Even if there is a single primary developer,

the Feature Partner will be involved in all key design discussions and responsible

for providing prompt feedback

 

Defining the partner relationship explicitly clarifies that time spent reviewing and de-

signing code in progress — even you are not writing — is a priority. This can also in-

crease knowledge sharing on a deeper level.

42

Having a Feature Partner addresses three of the main challenges to good code re-

view feedback:

- Availability for review: The Feature Partner shares responsibility with the pri-

mary developer for delivering a set of tasks related to a feature.

- Availability as a sounding board: The feature partner is jointly responsible

for delivering a feature, so being available to discuss issues as they arise is

part of the job.

- Context: The Feature Partner is engaged in the feature’s planning and can

be a good, high-bandwidth sounding board for questions during develop-

ment.

Any team, an agile team, in particular, needs to be aligned on goals rather than indi-

vidual achievements. As Gil Broza says in The Human Side of Agile:

 First, the team truly needs to be a team. Everyone needs a common goal and

interdependent commitments, so that everyone has the same long-term view

and the feeling of being together in the same boat. Individual ownership,

obligations, and objectives take away from being a team.

Feature Partners can take many forms, including:

- Developers participating in Pair Programming (being mindful about switch-

ing pairs and groupthink)

- Individual developers working on different tasks related to the same story

using the same tech stack, for example, two backend developers working

on tasks related to a story.

43

- Developers are working on different ends of an integration (backend and

mobile, for example) to deliver the same feature.

Whatever the structure, the essential requirements are that the Feature Partners are:

- Committed to working on a feature set.

- Can provide appropriate code review feedback to their feature partner.

During a development iteration, feature partners will collaborate to:

- Design code and interfaces.

- Be a sounding board for ideas.

- Meet with stakeholders to clarify questions about requirements and show

work in progress.

- Review each other’s code and unblock integration.

Using Feature Partners doesn’t preclude self-organization; the team can (and should)

decide what partnering approach makes sense during planning and who the Feature

Partners are. The important thing is that the organization acknowledges that having

two (or more) people associated with a work item makes sense in terms of delivery

and quality and that each development iteration starts with acknowledging this.

While it’s best that the Feature Partners actively develop code around a common

theme, simply having someone committed to being a sounding board and resource

can minimize development delays. Even having two people who commit to discussing

and reviewing each other’s code will be valuable.

44

Example

Implementing feature partners is as simple as acknowledging that at least two people

will be associated with every backlog item or feature. You can determine this:

- During Sprint Planning

- When a backlog item is moved to In Progress

Cautions

Team members should have a role in identifying what they will be feature partners on

— they should not be assigned top-down.

Having Feature Partners doesn’t mean others can’t participate in discussions. Oth-

ers on the team can also give valuable feedback. Explaining a design or code to

someone, regardless of their knowledge, can be helpful. A person with a new per-

spective can often provide out-of-the-box insights, and explaining can help the devel-

oper identify gaps. However, a Code Review might not be the best time for these con-

versations.

If you use Pair Programming, consider whether the co-creation nature of a pair

could take away some of the “external perspective” value of a review and if that ele-

ment will be problematic or not.

If the larger organization doesn’t prioritize team goals over individual delivery,

having Feature Partners can get pushback.

45

Next Steps

- Feature Partner depends on there being a Team Focus; a commitment to

working on features rather than tasks.

Conclusion
Codelines are a central part of the software development process, and the right code-

lines can support your process and help your team thrive and deliver. Codelines don’t

exist in isolation, and a pattern language that shows how codelines fit in with other el-

ements of the software eco system can help teams build robust approaches to code-

line management.

References

Appendix

What a Branch Is

While there are a variety of branching models, the use of version management in soft-

ware development is almost universal. There is a primary code line , the Main Line,

which contains the history of all the changes to a project, allowing for the identifica-

46

tion of what changed and who changed it. When making changes to code, it’s com-

mon practice to “checkout” a copy of the latest version of the Main Line into a devel-

opment workspace. Between the time the work starts until it is integrated into the

Main Line, the Workspace represents a parallel code path from the Main Line. A paral-

lel code path is a Branch.

A Branch workstream can be code in a workspace that is:

- not backed by a version management system

- backed by a local to the workspace branch (used for local tracking, but nev-

er pushed to a shared repository)

- backed by a branch that is pushed to a shared repository.

Team software development works best when these parallel workstreams are integrat-

ed quickly and frequently into the Main Line.

This pattern language describes how to use shared branches effectively when de-

veloping software in an agile development environment.

Kinds of Branches

While the central element of the pattern language is a short lived Task Branch, there

are a number of branch types that teams commonly used for various purposes. The ta-

ble below describes some common branch types.

47

A Way to Think About Branches

Branch Type Purpose Lifetime Contributors Final Disposi-
tion

Main Line Where all the
code lives

For the life of the
project

The whole team Lives on

Task Branch To work on a De-
velopment task

For the life of the
task. A couple of
days. No longer
than a sprint.

1 Developer
(primarily)

Merge to main
after a Review.
Delete

Feature Branch To collaborate
on a disruptive
feature or proof
of concept

Until the feature
is done. 1-2
sprints. Shorter
is better

A subset of the
team

Merge to Main
and delete once
complete

Release Line To capture a ver-
sion for deploy-
ment, and to po-
tentially enable
hot fix type re-
leases

Until the next
version is de-
ployed, or until
this release is no
longer support-
ed.

The whole team
contributes at
the start

Archive once no
longer needed

While each type is useful in the right context, this patternsl anguage focuses on short

lived Task Branches that you integrate into the Main Line frequently.

 Agile Software Development

This pattern language uses the term Agile Software Development to mean a process

that is iterative, using short planning and development cycles, which allows for work-

ing software at the end of any development iteration. Some of the elements of an ag-

ile process are:

48

- Frequent and rapid feedback, for both the work being done and the

process itself.

- Collaboration among team members and between team members and the

business owner

- The use of techniques and tools to facilitate the feedback and collaboration

process, with an emphasis on improving the quality of human interactions.

The engineering processes a team uses, including around code lines, should facilitate

collaboration, with a focus on delivering value and reducing development overhead

as much as possible.

Most agile processes are aligned with the principles of the Manifesto for Agile

Software Development:

- Individuals and interactions over processes and tools

- Working software over comprehensive documentation

- Customer collaboration over contract negotiation

- Responding to change over following a plan

Scrum and XP are two common approaches. The pattern language its method agnos-

tic but assumes that:

- Planning and Development is done in iterations (iterations can be any

length)

- There is some sort of plan in the form of a backlog

- The goal is to deliver work represented by a Backlog Item before the end of

the iteration, if not more frequently.

https://agilemanifesto.org/
https://agilemanifesto.org/

49

Role of SCM
The book Accelerate places SCM as central to a key agile development practice: Con-

tinuous Delivery:

In order to implement continuous delivery, we must create the following foun-

dations: Comprehensive configuration management.

Even if your team doesn’t delivery continuously to production, being able to deploy

the latest code somewhere on demand is a key milestone on the path to being more

agile.

Brief overview of the patterns including patterns that are not in this paper.

